精校:6

This commit is contained in:
Unknwon
2015-07-26 17:16:55 +08:00
parent 22d14d8a24
commit 1c6be233fc
4 changed files with 4 additions and 4 deletions

View File

@@ -103,4 +103,4 @@ type binOp func(int, int) int
- [目录](directory.md)
- 上一节:[函数function](06.0.md)
- 下一节:[参数与返回值](06.2.md)
- 下一节:[函数参数与返回值](06.2.md)

View File

@@ -10,7 +10,7 @@ delta := end.Sub(start)
fmt.Printf("longCalculation took this amount of time: %s\n", delta)
```
您可以查看 Listing 6.20—fibonacci.go 作为实例学习。
您可以查看示例 6.20 [fibonacci.go](examples/chapter_6/fibonacci.go) 作为实例学习。
如果您对一段代码进行了所谓的优化,请务必对它们之间的效率进行对比再做出最后的判断。在接下来的章节中,我们会学习如何进行有价值的优化操作。

View File

@@ -2,7 +2,7 @@
当在进行大量的计算时,提升性能最直接有效的一种方式就是避免重复计算。通过在内存中缓存和重复利用相同计算的结果,称之为内存缓存。最明显的例子就是生成斐波那契数列的程序(详见第 6.6 和 6.11 节):
要计算数列中第 n 个数字,需要先得到之前两个数的值,但很明显绝大多数情况下前两个数的值都是已经计算过的。即每个更后面的数都是基于之前计算结果的重复计算,正如 listing 6.11 - fibonnaci.go 所展示的那样。
要计算数列中第 n 个数字,需要先得到之前两个数的值,但很明显绝大多数情况下前两个数的值都是已经计算过的。即每个更后面的数都是基于之前计算结果的重复计算,正如示例 6.11 [fibonnaci.go](examples/chapter_6/fibonnaci.go) 所展示的那样。
而我们要做就是将第 n 个数的值存在数组中索引为 n 的位置(详见第 7 章),然后在数组中查找是否已经计算过,如果没有找到,则再进行计算。

View File

@@ -108,5 +108,5 @@ func F3(s []string) { }
## 链接
- [目录](directory.md)
- 上一节:[参数与返回值](06.2.md)
- 上一节:[函数参数与返回值](06.2.md)
- 下一节:[defer 和追踪](06.4.md)