add vendor packages避免用户网络太慢无法下载编译

This commit is contained in:
hebo 2019-08-09 11:36:20 +08:00
parent 057559d437
commit 28661b662d
314 changed files with 73688 additions and 1 deletions

2
.gitignore vendored
View File

@ -3,4 +3,4 @@
*.swp
one_key.sh
sniffer-agent
vendor/github.com
# vendor/github.com

26
vendor/github.com/Shopify/sarama/.gitignore generated vendored Normal file
View File

@ -0,0 +1,26 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
*.test
# Folders
_obj
_test
.vagrant
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
coverage.txt

37
vendor/github.com/Shopify/sarama/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,37 @@
language: go
go:
- 1.7.x
- 1.8.x
- 1.9.x
env:
global:
- KAFKA_PEERS=localhost:9091,localhost:9092,localhost:9093,localhost:9094,localhost:9095
- TOXIPROXY_ADDR=http://localhost:8474
- KAFKA_INSTALL_ROOT=/home/travis/kafka
- KAFKA_HOSTNAME=localhost
- DEBUG=true
matrix:
- KAFKA_VERSION=0.10.2.1
- KAFKA_VERSION=0.11.0.2
- KAFKA_VERSION=1.0.0
before_install:
- export REPOSITORY_ROOT=${TRAVIS_BUILD_DIR}
- vagrant/install_cluster.sh
- vagrant/boot_cluster.sh
- vagrant/create_topics.sh
install:
- make install_dependencies
script:
- make test
- make vet
- make errcheck
- make fmt
after_success:
- bash <(curl -s https://codecov.io/bash)
sudo: false

435
vendor/github.com/Shopify/sarama/CHANGELOG.md generated vendored Normal file
View File

@ -0,0 +1,435 @@
# Changelog
#### Version 1.14.0 (2017-11-13)
New Features:
- Add support for the new Kafka 0.11 record-batch format, including the wire
protocol and the necessary behavioural changes in the producer and consumer.
Transactions and idempotency are not yet supported, but producing and
consuming should work with all the existing bells and whistles (batching,
compression, etc) as well as the new custom headers. Thanks to Vlad Hanciuta
of Arista Networks for this work. Part of
([#901](https://github.com/Shopify/sarama/issues/901)).
Bug Fixes:
- Fix encoding of ProduceResponse versions in test
([#970](https://github.com/Shopify/sarama/pull/970)).
- Return partial replicas list when we have it
([#975](https://github.com/Shopify/sarama/pull/975)).
#### Version 1.13.0 (2017-10-04)
New Features:
- Support for FetchRequest version 3
([#905](https://github.com/Shopify/sarama/pull/905)).
- Permit setting version on mock FetchResponses
([#939](https://github.com/Shopify/sarama/pull/939)).
- Add a configuration option to support storing only minimal metadata for
extremely large clusters
([#937](https://github.com/Shopify/sarama/pull/937)).
- Add `PartitionOffsetManager.ResetOffset` for backtracking tracked offsets
([#932](https://github.com/Shopify/sarama/pull/932)).
Improvements:
- Provide the block-level timestamp when consuming compressed messages
([#885](https://github.com/Shopify/sarama/issues/885)).
- `Client.Replicas` and `Client.InSyncReplicas` now respect the order returned
by the broker, which can be meaningful
([#930](https://github.com/Shopify/sarama/pull/930)).
- Use a `Ticker` to reduce consumer timer overhead at the cost of higher
variance in the actual timeout
([#933](https://github.com/Shopify/sarama/pull/933)).
Bug Fixes:
- Gracefully handle messages with negative timestamps
([#907](https://github.com/Shopify/sarama/pull/907)).
- Raise a proper error when encountering an unknown message version
([#940](https://github.com/Shopify/sarama/pull/940)).
#### Version 1.12.0 (2017-05-08)
New Features:
- Added support for the `ApiVersions` request and response pair, and Kafka
version 0.10.2 ([#867](https://github.com/Shopify/sarama/pull/867)). Note
that you still need to specify the Kafka version in the Sarama configuration
for the time being.
- Added a `Brokers` method to the Client which returns the complete set of
active brokers ([#813](https://github.com/Shopify/sarama/pull/813)).
- Added an `InSyncReplicas` method to the Client which returns the set of all
in-sync broker IDs for the given partition, now that the Kafka versions for
which this was misleading are no longer in our supported set
([#872](https://github.com/Shopify/sarama/pull/872)).
- Added a `NewCustomHashPartitioner` method which allows constructing a hash
partitioner with a custom hash method in case the default (FNV-1a) is not
suitable
([#837](https://github.com/Shopify/sarama/pull/837),
[#841](https://github.com/Shopify/sarama/pull/841)).
Improvements:
- Recognize more Kafka error codes
([#859](https://github.com/Shopify/sarama/pull/859)).
Bug Fixes:
- Fix an issue where decoding a malformed FetchRequest would not return the
correct error ([#818](https://github.com/Shopify/sarama/pull/818)).
- Respect ordering of group protocols in JoinGroupRequests. This fix is
transparent if you're using the `AddGroupProtocol` or
`AddGroupProtocolMetadata` helpers; otherwise you will need to switch from
the `GroupProtocols` field (now deprecated) to use `OrderedGroupProtocols`
([#812](https://github.com/Shopify/sarama/issues/812)).
- Fix an alignment-related issue with atomics on 32-bit architectures
([#859](https://github.com/Shopify/sarama/pull/859)).
#### Version 1.11.0 (2016-12-20)
_Important:_ As of Sarama 1.11 it is necessary to set the config value of
`Producer.Return.Successes` to true in order to use the SyncProducer. Previous
versions would silently override this value when instantiating a SyncProducer
which led to unexpected values and data races.
New Features:
- Metrics! Thanks to Sébastien Launay for all his work on this feature
([#701](https://github.com/Shopify/sarama/pull/701),
[#746](https://github.com/Shopify/sarama/pull/746),
[#766](https://github.com/Shopify/sarama/pull/766)).
- Add support for LZ4 compression
([#786](https://github.com/Shopify/sarama/pull/786)).
- Add support for ListOffsetRequest v1 and Kafka 0.10.1
([#775](https://github.com/Shopify/sarama/pull/775)).
- Added a `HighWaterMarks` method to the Consumer which aggregates the
`HighWaterMarkOffset` values of its child topic/partitions
([#769](https://github.com/Shopify/sarama/pull/769)).
Bug Fixes:
- Fixed producing when using timestamps, compression and Kafka 0.10
([#759](https://github.com/Shopify/sarama/pull/759)).
- Added missing decoder methods to DescribeGroups response
([#756](https://github.com/Shopify/sarama/pull/756)).
- Fix producer shutdown when `Return.Errors` is disabled
([#787](https://github.com/Shopify/sarama/pull/787)).
- Don't mutate configuration in SyncProducer
([#790](https://github.com/Shopify/sarama/pull/790)).
- Fix crash on SASL initialization failure
([#795](https://github.com/Shopify/sarama/pull/795)).
#### Version 1.10.1 (2016-08-30)
Bug Fixes:
- Fix the documentation for `HashPartitioner` which was incorrect
([#717](https://github.com/Shopify/sarama/pull/717)).
- Permit client creation even when it is limited by ACLs
([#722](https://github.com/Shopify/sarama/pull/722)).
- Several fixes to the consumer timer optimization code, regressions introduced
in v1.10.0. Go's timers are finicky
([#730](https://github.com/Shopify/sarama/pull/730),
[#733](https://github.com/Shopify/sarama/pull/733),
[#734](https://github.com/Shopify/sarama/pull/734)).
- Handle consuming compressed relative offsets with Kafka 0.10
([#735](https://github.com/Shopify/sarama/pull/735)).
#### Version 1.10.0 (2016-08-02)
_Important:_ As of Sarama 1.10 it is necessary to tell Sarama the version of
Kafka you are running against (via the `config.Version` value) in order to use
features that may not be compatible with old Kafka versions. If you don't
specify this value it will default to 0.8.2 (the minimum supported), and trying
to use more recent features (like the offset manager) will fail with an error.
_Also:_ The offset-manager's behaviour has been changed to match the upstream
java consumer (see [#705](https://github.com/Shopify/sarama/pull/705) and
[#713](https://github.com/Shopify/sarama/pull/713)). If you use the
offset-manager, please ensure that you are committing one *greater* than the
last consumed message offset or else you may end up consuming duplicate
messages.
New Features:
- Support for Kafka 0.10
([#672](https://github.com/Shopify/sarama/pull/672),
[#678](https://github.com/Shopify/sarama/pull/678),
[#681](https://github.com/Shopify/sarama/pull/681), and others).
- Support for configuring the target Kafka version
([#676](https://github.com/Shopify/sarama/pull/676)).
- Batch producing support in the SyncProducer
([#677](https://github.com/Shopify/sarama/pull/677)).
- Extend producer mock to allow setting expectations on message contents
([#667](https://github.com/Shopify/sarama/pull/667)).
Improvements:
- Support `nil` compressed messages for deleting in compacted topics
([#634](https://github.com/Shopify/sarama/pull/634)).
- Pre-allocate decoding errors, greatly reducing heap usage and GC time against
misbehaving brokers ([#690](https://github.com/Shopify/sarama/pull/690)).
- Re-use consumer expiry timers, removing one allocation per consumed message
([#707](https://github.com/Shopify/sarama/pull/707)).
Bug Fixes:
- Actually default the client ID to "sarama" like we say we do
([#664](https://github.com/Shopify/sarama/pull/664)).
- Fix a rare issue where `Client.Leader` could return the wrong error
([#685](https://github.com/Shopify/sarama/pull/685)).
- Fix a possible tight loop in the consumer
([#693](https://github.com/Shopify/sarama/pull/693)).
- Match upstream's offset-tracking behaviour
([#705](https://github.com/Shopify/sarama/pull/705)).
- Report UnknownTopicOrPartition errors from the offset manager
([#706](https://github.com/Shopify/sarama/pull/706)).
- Fix possible negative partition value from the HashPartitioner
([#709](https://github.com/Shopify/sarama/pull/709)).
#### Version 1.9.0 (2016-05-16)
New Features:
- Add support for custom offset manager retention durations
([#602](https://github.com/Shopify/sarama/pull/602)).
- Publish low-level mocks to enable testing of third-party producer/consumer
implementations ([#570](https://github.com/Shopify/sarama/pull/570)).
- Declare support for Golang 1.6
([#611](https://github.com/Shopify/sarama/pull/611)).
- Support for SASL plain-text auth
([#648](https://github.com/Shopify/sarama/pull/648)).
Improvements:
- Simplified broker locking scheme slightly
([#604](https://github.com/Shopify/sarama/pull/604)).
- Documentation cleanup
([#605](https://github.com/Shopify/sarama/pull/605),
[#621](https://github.com/Shopify/sarama/pull/621),
[#654](https://github.com/Shopify/sarama/pull/654)).
Bug Fixes:
- Fix race condition shutting down the OffsetManager
([#658](https://github.com/Shopify/sarama/pull/658)).
#### Version 1.8.0 (2016-02-01)
New Features:
- Full support for Kafka 0.9:
- All protocol messages and fields
([#586](https://github.com/Shopify/sarama/pull/586),
[#588](https://github.com/Shopify/sarama/pull/588),
[#590](https://github.com/Shopify/sarama/pull/590)).
- Verified that TLS support works
([#581](https://github.com/Shopify/sarama/pull/581)).
- Fixed the OffsetManager compatibility
([#585](https://github.com/Shopify/sarama/pull/585)).
Improvements:
- Optimize for fewer system calls when reading from the network
([#584](https://github.com/Shopify/sarama/pull/584)).
- Automatically retry `InvalidMessage` errors to match upstream behaviour
([#589](https://github.com/Shopify/sarama/pull/589)).
#### Version 1.7.0 (2015-12-11)
New Features:
- Preliminary support for Kafka 0.9
([#572](https://github.com/Shopify/sarama/pull/572)). This comes with several
caveats:
- Protocol-layer support is mostly in place
([#577](https://github.com/Shopify/sarama/pull/577)), however Kafka 0.9
renamed some messages and fields, which we did not in order to preserve API
compatibility.
- The producer and consumer work against 0.9, but the offset manager does
not ([#573](https://github.com/Shopify/sarama/pull/573)).
- TLS support may or may not work
([#581](https://github.com/Shopify/sarama/pull/581)).
Improvements:
- Don't wait for request timeouts on dead brokers, greatly speeding recovery
when the TCP connection is left hanging
([#548](https://github.com/Shopify/sarama/pull/548)).
- Refactored part of the producer. The new version provides a much more elegant
solution to [#449](https://github.com/Shopify/sarama/pull/449). It is also
slightly more efficient, and much more precise in calculating batch sizes
when compression is used
([#549](https://github.com/Shopify/sarama/pull/549),
[#550](https://github.com/Shopify/sarama/pull/550),
[#551](https://github.com/Shopify/sarama/pull/551)).
Bug Fixes:
- Fix race condition in consumer test mock
([#553](https://github.com/Shopify/sarama/pull/553)).
#### Version 1.6.1 (2015-09-25)
Bug Fixes:
- Fix panic that could occur if a user-supplied message value failed to encode
([#449](https://github.com/Shopify/sarama/pull/449)).
#### Version 1.6.0 (2015-09-04)
New Features:
- Implementation of a consumer offset manager using the APIs introduced in
Kafka 0.8.2. The API is designed mainly for integration into a future
high-level consumer, not for direct use, although it is *possible* to use it
directly.
([#461](https://github.com/Shopify/sarama/pull/461)).
Improvements:
- CRC32 calculation is much faster on machines with SSE4.2 instructions,
removing a major hotspot from most profiles
([#255](https://github.com/Shopify/sarama/pull/255)).
Bug Fixes:
- Make protocol decoding more robust against some malformed packets generated
by go-fuzz ([#523](https://github.com/Shopify/sarama/pull/523),
[#525](https://github.com/Shopify/sarama/pull/525)) or found in other ways
([#528](https://github.com/Shopify/sarama/pull/528)).
- Fix a potential race condition panic in the consumer on shutdown
([#529](https://github.com/Shopify/sarama/pull/529)).
#### Version 1.5.0 (2015-08-17)
New Features:
- TLS-encrypted network connections are now supported. This feature is subject
to change when Kafka releases built-in TLS support, but for now this is
enough to work with TLS-terminating proxies
([#154](https://github.com/Shopify/sarama/pull/154)).
Improvements:
- The consumer will not block if a single partition is not drained by the user;
all other partitions will continue to consume normally
([#485](https://github.com/Shopify/sarama/pull/485)).
- Formatting of error strings has been much improved
([#495](https://github.com/Shopify/sarama/pull/495)).
- Internal refactoring of the producer for code cleanliness and to enable
future work ([#300](https://github.com/Shopify/sarama/pull/300)).
Bug Fixes:
- Fix a potential deadlock in the consumer on shutdown
([#475](https://github.com/Shopify/sarama/pull/475)).
#### Version 1.4.3 (2015-07-21)
Bug Fixes:
- Don't include the partitioner in the producer's "fetch partitions"
circuit-breaker ([#466](https://github.com/Shopify/sarama/pull/466)).
- Don't retry messages until the broker is closed when abandoning a broker in
the producer ([#468](https://github.com/Shopify/sarama/pull/468)).
- Update the import path for snappy-go, it has moved again and the API has
changed slightly ([#486](https://github.com/Shopify/sarama/pull/486)).
#### Version 1.4.2 (2015-05-27)
Bug Fixes:
- Update the import path for snappy-go, it has moved from google code to github
([#456](https://github.com/Shopify/sarama/pull/456)).
#### Version 1.4.1 (2015-05-25)
Improvements:
- Optimizations when decoding snappy messages, thanks to John Potocny
([#446](https://github.com/Shopify/sarama/pull/446)).
Bug Fixes:
- Fix hypothetical race conditions on producer shutdown
([#450](https://github.com/Shopify/sarama/pull/450),
[#451](https://github.com/Shopify/sarama/pull/451)).
#### Version 1.4.0 (2015-05-01)
New Features:
- The consumer now implements `Topics()` and `Partitions()` methods to enable
users to dynamically choose what topics/partitions to consume without
instantiating a full client
([#431](https://github.com/Shopify/sarama/pull/431)).
- The partition-consumer now exposes the high water mark offset value returned
by the broker via the `HighWaterMarkOffset()` method ([#339](https://github.com/Shopify/sarama/pull/339)).
- Added a `kafka-console-consumer` tool capable of handling multiple
partitions, and deprecated the now-obsolete `kafka-console-partitionConsumer`
([#439](https://github.com/Shopify/sarama/pull/439),
[#442](https://github.com/Shopify/sarama/pull/442)).
Improvements:
- The producer's logging during retry scenarios is more consistent, more
useful, and slightly less verbose
([#429](https://github.com/Shopify/sarama/pull/429)).
- The client now shuffles its initial list of seed brokers in order to prevent
thundering herd on the first broker in the list
([#441](https://github.com/Shopify/sarama/pull/441)).
Bug Fixes:
- The producer now correctly manages its state if retries occur when it is
shutting down, fixing several instances of confusing behaviour and at least
one potential deadlock ([#419](https://github.com/Shopify/sarama/pull/419)).
- The consumer now handles messages for different partitions asynchronously,
making it much more resilient to specific user code ordering
([#325](https://github.com/Shopify/sarama/pull/325)).
#### Version 1.3.0 (2015-04-16)
New Features:
- The client now tracks consumer group coordinators using
ConsumerMetadataRequests similar to how it tracks partition leadership using
regular MetadataRequests ([#411](https://github.com/Shopify/sarama/pull/411)).
This adds two methods to the client API:
- `Coordinator(consumerGroup string) (*Broker, error)`
- `RefreshCoordinator(consumerGroup string) error`
Improvements:
- ConsumerMetadataResponses now automatically create a Broker object out of the
ID/address/port combination for the Coordinator; accessing the fields
individually has been deprecated
([#413](https://github.com/Shopify/sarama/pull/413)).
- Much improved handling of `OffsetOutOfRange` errors in the consumer.
Consumers will fail to start if the provided offset is out of range
([#418](https://github.com/Shopify/sarama/pull/418))
and they will automatically shut down if the offset falls out of range
([#424](https://github.com/Shopify/sarama/pull/424)).
- Small performance improvement in encoding and decoding protocol messages
([#427](https://github.com/Shopify/sarama/pull/427)).
Bug Fixes:
- Fix a rare race condition in the client's background metadata refresher if
it happens to be activated while the client is being closed
([#422](https://github.com/Shopify/sarama/pull/422)).
#### Version 1.2.0 (2015-04-07)
Improvements:
- The producer's behaviour when `Flush.Frequency` is set is now more intuitive
([#389](https://github.com/Shopify/sarama/pull/389)).
- The producer is now somewhat more memory-efficient during and after retrying
messages due to an improved queue implementation
([#396](https://github.com/Shopify/sarama/pull/396)).
- The consumer produces much more useful logging output when leadership
changes ([#385](https://github.com/Shopify/sarama/pull/385)).
- The client's `GetOffset` method will now automatically refresh metadata and
retry once in the event of stale information or similar
([#394](https://github.com/Shopify/sarama/pull/394)).
- Broker connections now have support for using TCP keepalives
([#407](https://github.com/Shopify/sarama/issues/407)).
Bug Fixes:
- The OffsetCommitRequest message now correctly implements all three possible
API versions ([#390](https://github.com/Shopify/sarama/pull/390),
[#400](https://github.com/Shopify/sarama/pull/400)).
#### Version 1.1.0 (2015-03-20)
Improvements:
- Wrap the producer's partitioner call in a circuit-breaker so that repeatedly
broken topics don't choke throughput
([#373](https://github.com/Shopify/sarama/pull/373)).
Bug Fixes:
- Fix the producer's internal reference counting in certain unusual scenarios
([#367](https://github.com/Shopify/sarama/pull/367)).
- Fix the consumer's internal reference counting in certain unusual scenarios
([#369](https://github.com/Shopify/sarama/pull/369)).
- Fix a condition where the producer's internal control messages could have
gotten stuck ([#368](https://github.com/Shopify/sarama/pull/368)).
- Fix an issue where invalid partition lists would be cached when asking for
metadata for a non-existant topic ([#372](https://github.com/Shopify/sarama/pull/372)).
#### Version 1.0.0 (2015-03-17)
Version 1.0.0 is the first tagged version, and is almost a complete rewrite. The primary differences with previous untagged versions are:
- The producer has been rewritten; there is now a `SyncProducer` with a blocking API, and an `AsyncProducer` that is non-blocking.
- The consumer has been rewritten to only open one connection per broker instead of one connection per partition.
- The main types of Sarama are now interfaces to make depedency injection easy; mock implementations for `Consumer`, `SyncProducer` and `AsyncProducer` are provided in the `github.com/Shopify/sarama/mocks` package.
- For most uses cases, it is no longer necessary to open a `Client`; this will be done for you.
- All the configuration values have been unified in the `Config` struct.
- Much improved test suite.

20
vendor/github.com/Shopify/sarama/LICENSE generated vendored Normal file
View File

@ -0,0 +1,20 @@
Copyright (c) 2013 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

29
vendor/github.com/Shopify/sarama/Makefile generated vendored Normal file
View File

@ -0,0 +1,29 @@
default: fmt vet errcheck test
# Taken from https://github.com/codecov/example-go#caveat-multiple-files
test:
echo "" > coverage.txt
for d in `go list ./... | grep -v vendor`; do \
go test -v -timeout 60s -race -coverprofile=profile.out -covermode=atomic $$d; \
if [ -f profile.out ]; then \
cat profile.out >> coverage.txt; \
rm profile.out; \
fi \
done
vet:
go vet ./...
errcheck:
errcheck github.com/Shopify/sarama/...
fmt:
@if [ -n "$$(go fmt ./...)" ]; then echo 'Please run go fmt on your code.' && exit 1; fi
install_dependencies: install_errcheck get
install_errcheck:
go get github.com/kisielk/errcheck
get:
go get -t

39
vendor/github.com/Shopify/sarama/README.md generated vendored Normal file
View File

@ -0,0 +1,39 @@
sarama
======
[![GoDoc](https://godoc.org/github.com/Shopify/sarama?status.png)](https://godoc.org/github.com/Shopify/sarama)
[![Build Status](https://travis-ci.org/Shopify/sarama.svg?branch=master)](https://travis-ci.org/Shopify/sarama)
[![Coverage](https://codecov.io/gh/Shopify/sarama/branch/master/graph/badge.svg)](https://codecov.io/gh/Shopify/sarama)
Sarama is an MIT-licensed Go client library for [Apache Kafka](https://kafka.apache.org/) version 0.8 (and later).
### Getting started
- API documentation and examples are available via [godoc](https://godoc.org/github.com/Shopify/sarama).
- Mocks for testing are available in the [mocks](./mocks) subpackage.
- The [examples](./examples) directory contains more elaborate example applications.
- The [tools](./tools) directory contains command line tools that can be useful for testing, diagnostics, and instrumentation.
You might also want to look at the [Frequently Asked Questions](https://github.com/Shopify/sarama/wiki/Frequently-Asked-Questions).
### Compatibility and API stability
Sarama provides a "2 releases + 2 months" compatibility guarantee: we support
the two latest stable releases of Kafka and Go, and we provide a two month
grace period for older releases. This means we currently officially support
Go 1.9 through 1.7, and Kafka 1.0 through 0.10, although older releases are
still likely to work.
Sarama follows semantic versioning and provides API stability via the gopkg.in service.
You can import a version with a guaranteed stable API via http://gopkg.in/Shopify/sarama.v1.
A changelog is available [here](CHANGELOG.md).
### Contributing
* Get started by checking our [contribution guidelines](https://github.com/Shopify/sarama/blob/master/.github/CONTRIBUTING.md).
* Read the [Sarama wiki](https://github.com/Shopify/sarama/wiki) for more
technical and design details.
* The [Kafka Protocol Specification](https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol)
contains a wealth of useful information.
* For more general issues, there is [a google group](https://groups.google.com/forum/#!forum/kafka-clients) for Kafka client developers.
* If you have any questions, just ask!

20
vendor/github.com/Shopify/sarama/Vagrantfile generated vendored Normal file
View File

@ -0,0 +1,20 @@
# -*- mode: ruby -*-
# vi: set ft=ruby :
# Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"
# We have 5 * 192MB ZK processes and 5 * 320MB Kafka processes => 2560MB
MEMORY = 3072
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.box = "ubuntu/trusty64"
config.vm.provision :shell, path: "vagrant/provision.sh"
config.vm.network "private_network", ip: "192.168.100.67"
config.vm.provider "virtualbox" do |v|
v.memory = MEMORY
end
end

View File

@ -0,0 +1,24 @@
package sarama
type ApiVersionsRequest struct {
}
func (r *ApiVersionsRequest) encode(pe packetEncoder) error {
return nil
}
func (r *ApiVersionsRequest) decode(pd packetDecoder, version int16) (err error) {
return nil
}
func (r *ApiVersionsRequest) key() int16 {
return 18
}
func (r *ApiVersionsRequest) version() int16 {
return 0
}
func (r *ApiVersionsRequest) requiredVersion() KafkaVersion {
return V0_10_0_0
}

View File

@ -0,0 +1,87 @@
package sarama
type ApiVersionsResponseBlock struct {
ApiKey int16
MinVersion int16
MaxVersion int16
}
func (b *ApiVersionsResponseBlock) encode(pe packetEncoder) error {
pe.putInt16(b.ApiKey)
pe.putInt16(b.MinVersion)
pe.putInt16(b.MaxVersion)
return nil
}
func (b *ApiVersionsResponseBlock) decode(pd packetDecoder) error {
var err error
if b.ApiKey, err = pd.getInt16(); err != nil {
return err
}
if b.MinVersion, err = pd.getInt16(); err != nil {
return err
}
if b.MaxVersion, err = pd.getInt16(); err != nil {
return err
}
return nil
}
type ApiVersionsResponse struct {
Err KError
ApiVersions []*ApiVersionsResponseBlock
}
func (r *ApiVersionsResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
if err := pe.putArrayLength(len(r.ApiVersions)); err != nil {
return err
}
for _, apiVersion := range r.ApiVersions {
if err := apiVersion.encode(pe); err != nil {
return err
}
}
return nil
}
func (r *ApiVersionsResponse) decode(pd packetDecoder, version int16) error {
kerr, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(kerr)
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
r.ApiVersions = make([]*ApiVersionsResponseBlock, numBlocks)
for i := 0; i < numBlocks; i++ {
block := new(ApiVersionsResponseBlock)
if err := block.decode(pd); err != nil {
return err
}
r.ApiVersions[i] = block
}
return nil
}
func (r *ApiVersionsResponse) key() int16 {
return 18
}
func (r *ApiVersionsResponse) version() int16 {
return 0
}
func (r *ApiVersionsResponse) requiredVersion() KafkaVersion {
return V0_10_0_0
}

921
vendor/github.com/Shopify/sarama/async_producer.go generated vendored Normal file
View File

@ -0,0 +1,921 @@
package sarama
import (
"encoding/binary"
"fmt"
"sync"
"time"
"github.com/eapache/go-resiliency/breaker"
"github.com/eapache/queue"
)
// AsyncProducer publishes Kafka messages using a non-blocking API. It routes messages
// to the correct broker for the provided topic-partition, refreshing metadata as appropriate,
// and parses responses for errors. You must read from the Errors() channel or the
// producer will deadlock. You must call Close() or AsyncClose() on a producer to avoid
// leaks: it will not be garbage-collected automatically when it passes out of
// scope.
type AsyncProducer interface {
// AsyncClose triggers a shutdown of the producer. The shutdown has completed
// when both the Errors and Successes channels have been closed. When calling
// AsyncClose, you *must* continue to read from those channels in order to
// drain the results of any messages in flight.
AsyncClose()
// Close shuts down the producer and waits for any buffered messages to be
// flushed. You must call this function before a producer object passes out of
// scope, as it may otherwise leak memory. You must call this before calling
// Close on the underlying client.
Close() error
// Input is the input channel for the user to write messages to that they
// wish to send.
Input() chan<- *ProducerMessage
// Successes is the success output channel back to the user when Return.Successes is
// enabled. If Return.Successes is true, you MUST read from this channel or the
// Producer will deadlock. It is suggested that you send and read messages
// together in a single select statement.
Successes() <-chan *ProducerMessage
// Errors is the error output channel back to the user. You MUST read from this
// channel or the Producer will deadlock when the channel is full. Alternatively,
// you can set Producer.Return.Errors in your config to false, which prevents
// errors to be returned.
Errors() <-chan *ProducerError
}
type asyncProducer struct {
client Client
conf *Config
ownClient bool
errors chan *ProducerError
input, successes, retries chan *ProducerMessage
inFlight sync.WaitGroup
brokers map[*Broker]chan<- *ProducerMessage
brokerRefs map[chan<- *ProducerMessage]int
brokerLock sync.Mutex
}
// NewAsyncProducer creates a new AsyncProducer using the given broker addresses and configuration.
func NewAsyncProducer(addrs []string, conf *Config) (AsyncProducer, error) {
client, err := NewClient(addrs, conf)
if err != nil {
return nil, err
}
p, err := NewAsyncProducerFromClient(client)
if err != nil {
return nil, err
}
p.(*asyncProducer).ownClient = true
return p, nil
}
// NewAsyncProducerFromClient creates a new Producer using the given client. It is still
// necessary to call Close() on the underlying client when shutting down this producer.
func NewAsyncProducerFromClient(client Client) (AsyncProducer, error) {
// Check that we are not dealing with a closed Client before processing any other arguments
if client.Closed() {
return nil, ErrClosedClient
}
p := &asyncProducer{
client: client,
conf: client.Config(),
errors: make(chan *ProducerError),
input: make(chan *ProducerMessage),
successes: make(chan *ProducerMessage),
retries: make(chan *ProducerMessage),
brokers: make(map[*Broker]chan<- *ProducerMessage),
brokerRefs: make(map[chan<- *ProducerMessage]int),
}
// launch our singleton dispatchers
go withRecover(p.dispatcher)
go withRecover(p.retryHandler)
return p, nil
}
type flagSet int8
const (
syn flagSet = 1 << iota // first message from partitionProducer to brokerProducer
fin // final message from partitionProducer to brokerProducer and back
shutdown // start the shutdown process
)
// ProducerMessage is the collection of elements passed to the Producer in order to send a message.
type ProducerMessage struct {
Topic string // The Kafka topic for this message.
// The partitioning key for this message. Pre-existing Encoders include
// StringEncoder and ByteEncoder.
Key Encoder
// The actual message to store in Kafka. Pre-existing Encoders include
// StringEncoder and ByteEncoder.
Value Encoder
// The headers are key-value pairs that are transparently passed
// by Kafka between producers and consumers.
Headers []RecordHeader
// This field is used to hold arbitrary data you wish to include so it
// will be available when receiving on the Successes and Errors channels.
// Sarama completely ignores this field and is only to be used for
// pass-through data.
Metadata interface{}
// Below this point are filled in by the producer as the message is processed
// Offset is the offset of the message stored on the broker. This is only
// guaranteed to be defined if the message was successfully delivered and
// RequiredAcks is not NoResponse.
Offset int64
// Partition is the partition that the message was sent to. This is only
// guaranteed to be defined if the message was successfully delivered.
Partition int32
// Timestamp is the timestamp assigned to the message by the broker. This
// is only guaranteed to be defined if the message was successfully
// delivered, RequiredAcks is not NoResponse, and the Kafka broker is at
// least version 0.10.0.
Timestamp time.Time
retries int
flags flagSet
}
const producerMessageOverhead = 26 // the metadata overhead of CRC, flags, etc.
func (m *ProducerMessage) byteSize(version int) int {
var size int
if version >= 2 {
size = maximumRecordOverhead
for _, h := range m.Headers {
size += len(h.Key) + len(h.Value) + 2*binary.MaxVarintLen32
}
} else {
size = producerMessageOverhead
}
if m.Key != nil {
size += m.Key.Length()
}
if m.Value != nil {
size += m.Value.Length()
}
return size
}
func (m *ProducerMessage) clear() {
m.flags = 0
m.retries = 0
}
// ProducerError is the type of error generated when the producer fails to deliver a message.
// It contains the original ProducerMessage as well as the actual error value.
type ProducerError struct {
Msg *ProducerMessage
Err error
}
func (pe ProducerError) Error() string {
return fmt.Sprintf("kafka: Failed to produce message to topic %s: %s", pe.Msg.Topic, pe.Err)
}
// ProducerErrors is a type that wraps a batch of "ProducerError"s and implements the Error interface.
// It can be returned from the Producer's Close method to avoid the need to manually drain the Errors channel
// when closing a producer.
type ProducerErrors []*ProducerError
func (pe ProducerErrors) Error() string {
return fmt.Sprintf("kafka: Failed to deliver %d messages.", len(pe))
}
func (p *asyncProducer) Errors() <-chan *ProducerError {
return p.errors
}
func (p *asyncProducer) Successes() <-chan *ProducerMessage {
return p.successes
}
func (p *asyncProducer) Input() chan<- *ProducerMessage {
return p.input
}
func (p *asyncProducer) Close() error {
p.AsyncClose()
if p.conf.Producer.Return.Successes {
go withRecover(func() {
for range p.successes {
}
})
}
var errors ProducerErrors
if p.conf.Producer.Return.Errors {
for event := range p.errors {
errors = append(errors, event)
}
} else {
<-p.errors
}
if len(errors) > 0 {
return errors
}
return nil
}
func (p *asyncProducer) AsyncClose() {
go withRecover(p.shutdown)
}
// singleton
// dispatches messages by topic
func (p *asyncProducer) dispatcher() {
handlers := make(map[string]chan<- *ProducerMessage)
shuttingDown := false
for msg := range p.input {
if msg == nil {
Logger.Println("Something tried to send a nil message, it was ignored.")
continue
}
if msg.flags&shutdown != 0 {
shuttingDown = true
p.inFlight.Done()
continue
} else if msg.retries == 0 {
if shuttingDown {
// we can't just call returnError here because that decrements the wait group,
// which hasn't been incremented yet for this message, and shouldn't be
pErr := &ProducerError{Msg: msg, Err: ErrShuttingDown}
if p.conf.Producer.Return.Errors {
p.errors <- pErr
} else {
Logger.Println(pErr)
}
continue
}
p.inFlight.Add(1)
}
version := 1
if p.conf.Version.IsAtLeast(V0_11_0_0) {
version = 2
}
if msg.byteSize(version) > p.conf.Producer.MaxMessageBytes {
p.returnError(msg, ErrMessageSizeTooLarge)
continue
}
handler := handlers[msg.Topic]
if handler == nil {
handler = p.newTopicProducer(msg.Topic)
handlers[msg.Topic] = handler
}
handler <- msg
}
for _, handler := range handlers {
close(handler)
}
}
// one per topic
// partitions messages, then dispatches them by partition
type topicProducer struct {
parent *asyncProducer
topic string
input <-chan *ProducerMessage
breaker *breaker.Breaker
handlers map[int32]chan<- *ProducerMessage
partitioner Partitioner
}
func (p *asyncProducer) newTopicProducer(topic string) chan<- *ProducerMessage {
input := make(chan *ProducerMessage, p.conf.ChannelBufferSize)
tp := &topicProducer{
parent: p,
topic: topic,
input: input,
breaker: breaker.New(3, 1, 10*time.Second),
handlers: make(map[int32]chan<- *ProducerMessage),
partitioner: p.conf.Producer.Partitioner(topic),
}
go withRecover(tp.dispatch)
return input
}
func (tp *topicProducer) dispatch() {
for msg := range tp.input {
if msg.retries == 0 {
if err := tp.partitionMessage(msg); err != nil {
tp.parent.returnError(msg, err)
continue
}
}
handler := tp.handlers[msg.Partition]
if handler == nil {
handler = tp.parent.newPartitionProducer(msg.Topic, msg.Partition)
tp.handlers[msg.Partition] = handler
}
handler <- msg
}
for _, handler := range tp.handlers {
close(handler)
}
}
func (tp *topicProducer) partitionMessage(msg *ProducerMessage) error {
var partitions []int32
err := tp.breaker.Run(func() (err error) {
if tp.partitioner.RequiresConsistency() {
partitions, err = tp.parent.client.Partitions(msg.Topic)
} else {
partitions, err = tp.parent.client.WritablePartitions(msg.Topic)
}
return
})
if err != nil {
return err
}
numPartitions := int32(len(partitions))
if numPartitions == 0 {
return ErrLeaderNotAvailable
}
choice, err := tp.partitioner.Partition(msg, numPartitions)
if err != nil {
return err
} else if choice < 0 || choice >= numPartitions {
return ErrInvalidPartition
}
msg.Partition = partitions[choice]
return nil
}
// one per partition per topic
// dispatches messages to the appropriate broker
// also responsible for maintaining message order during retries
type partitionProducer struct {
parent *asyncProducer
topic string
partition int32
input <-chan *ProducerMessage
leader *Broker
breaker *breaker.Breaker
output chan<- *ProducerMessage
// highWatermark tracks the "current" retry level, which is the only one where we actually let messages through,
// all other messages get buffered in retryState[msg.retries].buf to preserve ordering
// retryState[msg.retries].expectChaser simply tracks whether we've seen a fin message for a given level (and
// therefore whether our buffer is complete and safe to flush)
highWatermark int
retryState []partitionRetryState
}
type partitionRetryState struct {
buf []*ProducerMessage
expectChaser bool
}
func (p *asyncProducer) newPartitionProducer(topic string, partition int32) chan<- *ProducerMessage {
input := make(chan *ProducerMessage, p.conf.ChannelBufferSize)
pp := &partitionProducer{
parent: p,
topic: topic,
partition: partition,
input: input,
breaker: breaker.New(3, 1, 10*time.Second),
retryState: make([]partitionRetryState, p.conf.Producer.Retry.Max+1),
}
go withRecover(pp.dispatch)
return input
}
func (pp *partitionProducer) dispatch() {
// try to prefetch the leader; if this doesn't work, we'll do a proper call to `updateLeader`
// on the first message
pp.leader, _ = pp.parent.client.Leader(pp.topic, pp.partition)
if pp.leader != nil {
pp.output = pp.parent.getBrokerProducer(pp.leader)
pp.parent.inFlight.Add(1) // we're generating a syn message; track it so we don't shut down while it's still inflight
pp.output <- &ProducerMessage{Topic: pp.topic, Partition: pp.partition, flags: syn}
}
for msg := range pp.input {
if msg.retries > pp.highWatermark {
// a new, higher, retry level; handle it and then back off
pp.newHighWatermark(msg.retries)
time.Sleep(pp.parent.conf.Producer.Retry.Backoff)
} else if pp.highWatermark > 0 {
// we are retrying something (else highWatermark would be 0) but this message is not a *new* retry level
if msg.retries < pp.highWatermark {
// in fact this message is not even the current retry level, so buffer it for now (unless it's a just a fin)
if msg.flags&fin == fin {
pp.retryState[msg.retries].expectChaser = false
pp.parent.inFlight.Done() // this fin is now handled and will be garbage collected
} else {
pp.retryState[msg.retries].buf = append(pp.retryState[msg.retries].buf, msg)
}
continue
} else if msg.flags&fin == fin {
// this message is of the current retry level (msg.retries == highWatermark) and the fin flag is set,
// meaning this retry level is done and we can go down (at least) one level and flush that
pp.retryState[pp.highWatermark].expectChaser = false
pp.flushRetryBuffers()
pp.parent.inFlight.Done() // this fin is now handled and will be garbage collected
continue
}
}
// if we made it this far then the current msg contains real data, and can be sent to the next goroutine
// without breaking any of our ordering guarantees
if pp.output == nil {
if err := pp.updateLeader(); err != nil {
pp.parent.returnError(msg, err)
time.Sleep(pp.parent.conf.Producer.Retry.Backoff)
continue
}
Logger.Printf("producer/leader/%s/%d selected broker %d\n", pp.topic, pp.partition, pp.leader.ID())
}
pp.output <- msg
}
if pp.output != nil {
pp.parent.unrefBrokerProducer(pp.leader, pp.output)
}
}
func (pp *partitionProducer) newHighWatermark(hwm int) {
Logger.Printf("producer/leader/%s/%d state change to [retrying-%d]\n", pp.topic, pp.partition, hwm)
pp.highWatermark = hwm
// send off a fin so that we know when everything "in between" has made it
// back to us and we can safely flush the backlog (otherwise we risk re-ordering messages)
pp.retryState[pp.highWatermark].expectChaser = true
pp.parent.inFlight.Add(1) // we're generating a fin message; track it so we don't shut down while it's still inflight
pp.output <- &ProducerMessage{Topic: pp.topic, Partition: pp.partition, flags: fin, retries: pp.highWatermark - 1}
// a new HWM means that our current broker selection is out of date
Logger.Printf("producer/leader/%s/%d abandoning broker %d\n", pp.topic, pp.partition, pp.leader.ID())
pp.parent.unrefBrokerProducer(pp.leader, pp.output)
pp.output = nil
}
func (pp *partitionProducer) flushRetryBuffers() {
Logger.Printf("producer/leader/%s/%d state change to [flushing-%d]\n", pp.topic, pp.partition, pp.highWatermark)
for {
pp.highWatermark--
if pp.output == nil {
if err := pp.updateLeader(); err != nil {
pp.parent.returnErrors(pp.retryState[pp.highWatermark].buf, err)
goto flushDone
}
Logger.Printf("producer/leader/%s/%d selected broker %d\n", pp.topic, pp.partition, pp.leader.ID())
}
for _, msg := range pp.retryState[pp.highWatermark].buf {
pp.output <- msg
}
flushDone:
pp.retryState[pp.highWatermark].buf = nil
if pp.retryState[pp.highWatermark].expectChaser {
Logger.Printf("producer/leader/%s/%d state change to [retrying-%d]\n", pp.topic, pp.partition, pp.highWatermark)
break
} else if pp.highWatermark == 0 {
Logger.Printf("producer/leader/%s/%d state change to [normal]\n", pp.topic, pp.partition)
break
}
}
}
func (pp *partitionProducer) updateLeader() error {
return pp.breaker.Run(func() (err error) {
if err = pp.parent.client.RefreshMetadata(pp.topic); err != nil {
return err
}
if pp.leader, err = pp.parent.client.Leader(pp.topic, pp.partition); err != nil {
return err
}
pp.output = pp.parent.getBrokerProducer(pp.leader)
pp.parent.inFlight.Add(1) // we're generating a syn message; track it so we don't shut down while it's still inflight
pp.output <- &ProducerMessage{Topic: pp.topic, Partition: pp.partition, flags: syn}
return nil
})
}
// one per broker; also constructs an associated flusher
func (p *asyncProducer) newBrokerProducer(broker *Broker) chan<- *ProducerMessage {
var (
input = make(chan *ProducerMessage)
bridge = make(chan *produceSet)
responses = make(chan *brokerProducerResponse)
)
bp := &brokerProducer{
parent: p,
broker: broker,
input: input,
output: bridge,
responses: responses,
buffer: newProduceSet(p),
currentRetries: make(map[string]map[int32]error),
}
go withRecover(bp.run)
// minimal bridge to make the network response `select`able
go withRecover(func() {
for set := range bridge {
request := set.buildRequest()
response, err := broker.Produce(request)
responses <- &brokerProducerResponse{
set: set,
err: err,
res: response,
}
}
close(responses)
})
return input
}
type brokerProducerResponse struct {
set *produceSet
err error
res *ProduceResponse
}
// groups messages together into appropriately-sized batches for sending to the broker
// handles state related to retries etc
type brokerProducer struct {
parent *asyncProducer
broker *Broker
input <-chan *ProducerMessage
output chan<- *produceSet
responses <-chan *brokerProducerResponse
buffer *produceSet
timer <-chan time.Time
timerFired bool
closing error
currentRetries map[string]map[int32]error
}
func (bp *brokerProducer) run() {
var output chan<- *produceSet
Logger.Printf("producer/broker/%d starting up\n", bp.broker.ID())
for {
select {
case msg := <-bp.input:
if msg == nil {
bp.shutdown()
return
}
if msg.flags&syn == syn {
Logger.Printf("producer/broker/%d state change to [open] on %s/%d\n",
bp.broker.ID(), msg.Topic, msg.Partition)
if bp.currentRetries[msg.Topic] == nil {
bp.currentRetries[msg.Topic] = make(map[int32]error)
}
bp.currentRetries[msg.Topic][msg.Partition] = nil
bp.parent.inFlight.Done()
continue
}
if reason := bp.needsRetry(msg); reason != nil {
bp.parent.retryMessage(msg, reason)
if bp.closing == nil && msg.flags&fin == fin {
// we were retrying this partition but we can start processing again
delete(bp.currentRetries[msg.Topic], msg.Partition)
Logger.Printf("producer/broker/%d state change to [closed] on %s/%d\n",
bp.broker.ID(), msg.Topic, msg.Partition)
}
continue
}
if bp.buffer.wouldOverflow(msg) {
if err := bp.waitForSpace(msg); err != nil {
bp.parent.retryMessage(msg, err)
continue
}
}
if err := bp.buffer.add(msg); err != nil {
bp.parent.returnError(msg, err)
continue
}
if bp.parent.conf.Producer.Flush.Frequency > 0 && bp.timer == nil {
bp.timer = time.After(bp.parent.conf.Producer.Flush.Frequency)
}
case <-bp.timer:
bp.timerFired = true
case output <- bp.buffer:
bp.rollOver()
case response := <-bp.responses:
bp.handleResponse(response)
}
if bp.timerFired || bp.buffer.readyToFlush() {
output = bp.output
} else {
output = nil
}
}
}
func (bp *brokerProducer) shutdown() {
for !bp.buffer.empty() {
select {
case response := <-bp.responses:
bp.handleResponse(response)
case bp.output <- bp.buffer:
bp.rollOver()
}
}
close(bp.output)
for response := range bp.responses {
bp.handleResponse(response)
}
Logger.Printf("producer/broker/%d shut down\n", bp.broker.ID())
}
func (bp *brokerProducer) needsRetry(msg *ProducerMessage) error {
if bp.closing != nil {
return bp.closing
}
return bp.currentRetries[msg.Topic][msg.Partition]
}
func (bp *brokerProducer) waitForSpace(msg *ProducerMessage) error {
Logger.Printf("producer/broker/%d maximum request accumulated, waiting for space\n", bp.broker.ID())
for {
select {
case response := <-bp.responses:
bp.handleResponse(response)
// handling a response can change our state, so re-check some things
if reason := bp.needsRetry(msg); reason != nil {
return reason
} else if !bp.buffer.wouldOverflow(msg) {
return nil
}
case bp.output <- bp.buffer:
bp.rollOver()
return nil
}
}
}
func (bp *brokerProducer) rollOver() {
bp.timer = nil
bp.timerFired = false
bp.buffer = newProduceSet(bp.parent)
}
func (bp *brokerProducer) handleResponse(response *brokerProducerResponse) {
if response.err != nil {
bp.handleError(response.set, response.err)
} else {
bp.handleSuccess(response.set, response.res)
}
if bp.buffer.empty() {
bp.rollOver() // this can happen if the response invalidated our buffer
}
}
func (bp *brokerProducer) handleSuccess(sent *produceSet, response *ProduceResponse) {
// we iterate through the blocks in the request set, not the response, so that we notice
// if the response is missing a block completely
sent.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
if response == nil {
// this only happens when RequiredAcks is NoResponse, so we have to assume success
bp.parent.returnSuccesses(msgs)
return
}
block := response.GetBlock(topic, partition)
if block == nil {
bp.parent.returnErrors(msgs, ErrIncompleteResponse)
return
}
switch block.Err {
// Success
case ErrNoError:
if bp.parent.conf.Version.IsAtLeast(V0_10_0_0) && !block.Timestamp.IsZero() {
for _, msg := range msgs {
msg.Timestamp = block.Timestamp
}
}
for i, msg := range msgs {
msg.Offset = block.Offset + int64(i)
}
bp.parent.returnSuccesses(msgs)
// Retriable errors
case ErrInvalidMessage, ErrUnknownTopicOrPartition, ErrLeaderNotAvailable, ErrNotLeaderForPartition,
ErrRequestTimedOut, ErrNotEnoughReplicas, ErrNotEnoughReplicasAfterAppend:
Logger.Printf("producer/broker/%d state change to [retrying] on %s/%d because %v\n",
bp.broker.ID(), topic, partition, block.Err)
bp.currentRetries[topic][partition] = block.Err
bp.parent.retryMessages(msgs, block.Err)
bp.parent.retryMessages(bp.buffer.dropPartition(topic, partition), block.Err)
// Other non-retriable errors
default:
bp.parent.returnErrors(msgs, block.Err)
}
})
}
func (bp *brokerProducer) handleError(sent *produceSet, err error) {
switch err.(type) {
case PacketEncodingError:
sent.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
bp.parent.returnErrors(msgs, err)
})
default:
Logger.Printf("producer/broker/%d state change to [closing] because %s\n", bp.broker.ID(), err)
bp.parent.abandonBrokerConnection(bp.broker)
_ = bp.broker.Close()
bp.closing = err
sent.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
bp.parent.retryMessages(msgs, err)
})
bp.buffer.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
bp.parent.retryMessages(msgs, err)
})
bp.rollOver()
}
}
// singleton
// effectively a "bridge" between the flushers and the dispatcher in order to avoid deadlock
// based on https://godoc.org/github.com/eapache/channels#InfiniteChannel
func (p *asyncProducer) retryHandler() {
var msg *ProducerMessage
buf := queue.New()
for {
if buf.Length() == 0 {
msg = <-p.retries
} else {
select {
case msg = <-p.retries:
case p.input <- buf.Peek().(*ProducerMessage):
buf.Remove()
continue
}
}
if msg == nil {
return
}
buf.Add(msg)
}
}
// utility functions
func (p *asyncProducer) shutdown() {
Logger.Println("Producer shutting down.")
p.inFlight.Add(1)
p.input <- &ProducerMessage{flags: shutdown}
p.inFlight.Wait()
if p.ownClient {
err := p.client.Close()
if err != nil {
Logger.Println("producer/shutdown failed to close the embedded client:", err)
}
}
close(p.input)
close(p.retries)
close(p.errors)
close(p.successes)
}
func (p *asyncProducer) returnError(msg *ProducerMessage, err error) {
msg.clear()
pErr := &ProducerError{Msg: msg, Err: err}
if p.conf.Producer.Return.Errors {
p.errors <- pErr
} else {
Logger.Println(pErr)
}
p.inFlight.Done()
}
func (p *asyncProducer) returnErrors(batch []*ProducerMessage, err error) {
for _, msg := range batch {
p.returnError(msg, err)
}
}
func (p *asyncProducer) returnSuccesses(batch []*ProducerMessage) {
for _, msg := range batch {
if p.conf.Producer.Return.Successes {
msg.clear()
p.successes <- msg
}
p.inFlight.Done()
}
}
func (p *asyncProducer) retryMessage(msg *ProducerMessage, err error) {
if msg.retries >= p.conf.Producer.Retry.Max {
p.returnError(msg, err)
} else {
msg.retries++
p.retries <- msg
}
}
func (p *asyncProducer) retryMessages(batch []*ProducerMessage, err error) {
for _, msg := range batch {
p.retryMessage(msg, err)
}
}
func (p *asyncProducer) getBrokerProducer(broker *Broker) chan<- *ProducerMessage {
p.brokerLock.Lock()
defer p.brokerLock.Unlock()
bp := p.brokers[broker]
if bp == nil {
bp = p.newBrokerProducer(broker)
p.brokers[broker] = bp
p.brokerRefs[bp] = 0
}
p.brokerRefs[bp]++
return bp
}
func (p *asyncProducer) unrefBrokerProducer(broker *Broker, bp chan<- *ProducerMessage) {
p.brokerLock.Lock()
defer p.brokerLock.Unlock()
p.brokerRefs[bp]--
if p.brokerRefs[bp] == 0 {
close(bp)
delete(p.brokerRefs, bp)
if p.brokers[broker] == bp {
delete(p.brokers, broker)
}
}
}
func (p *asyncProducer) abandonBrokerConnection(broker *Broker) {
p.brokerLock.Lock()
defer p.brokerLock.Unlock()
delete(p.brokers, broker)
}

692
vendor/github.com/Shopify/sarama/broker.go generated vendored Normal file
View File

@ -0,0 +1,692 @@
package sarama
import (
"crypto/tls"
"encoding/binary"
"fmt"
"io"
"net"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/rcrowley/go-metrics"
)
// Broker represents a single Kafka broker connection. All operations on this object are entirely concurrency-safe.
type Broker struct {
id int32
addr string
conf *Config
correlationID int32
conn net.Conn
connErr error
lock sync.Mutex
opened int32
responses chan responsePromise
done chan bool
incomingByteRate metrics.Meter
requestRate metrics.Meter
requestSize metrics.Histogram
requestLatency metrics.Histogram
outgoingByteRate metrics.Meter
responseRate metrics.Meter
responseSize metrics.Histogram
brokerIncomingByteRate metrics.Meter
brokerRequestRate metrics.Meter
brokerRequestSize metrics.Histogram
brokerRequestLatency metrics.Histogram
brokerOutgoingByteRate metrics.Meter
brokerResponseRate metrics.Meter
brokerResponseSize metrics.Histogram
}
type responsePromise struct {
requestTime time.Time
correlationID int32
packets chan []byte
errors chan error
}
// NewBroker creates and returns a Broker targeting the given host:port address.
// This does not attempt to actually connect, you have to call Open() for that.
func NewBroker(addr string) *Broker {
return &Broker{id: -1, addr: addr}
}
// Open tries to connect to the Broker if it is not already connected or connecting, but does not block
// waiting for the connection to complete. This means that any subsequent operations on the broker will
// block waiting for the connection to succeed or fail. To get the effect of a fully synchronous Open call,
// follow it by a call to Connected(). The only errors Open will return directly are ConfigurationError or
// AlreadyConnected. If conf is nil, the result of NewConfig() is used.
func (b *Broker) Open(conf *Config) error {
if !atomic.CompareAndSwapInt32(&b.opened, 0, 1) {
return ErrAlreadyConnected
}
if conf == nil {
conf = NewConfig()
}
err := conf.Validate()
if err != nil {
return err
}
b.lock.Lock()
go withRecover(func() {
defer b.lock.Unlock()
dialer := net.Dialer{
Timeout: conf.Net.DialTimeout,
KeepAlive: conf.Net.KeepAlive,
}
if conf.Net.TLS.Enable {
b.conn, b.connErr = tls.DialWithDialer(&dialer, "tcp", b.addr, conf.Net.TLS.Config)
} else {
b.conn, b.connErr = dialer.Dial("tcp", b.addr)
}
if b.connErr != nil {
Logger.Printf("Failed to connect to broker %s: %s\n", b.addr, b.connErr)
b.conn = nil
atomic.StoreInt32(&b.opened, 0)
return
}
b.conn = newBufConn(b.conn)
b.conf = conf
// Create or reuse the global metrics shared between brokers
b.incomingByteRate = metrics.GetOrRegisterMeter("incoming-byte-rate", conf.MetricRegistry)
b.requestRate = metrics.GetOrRegisterMeter("request-rate", conf.MetricRegistry)
b.requestSize = getOrRegisterHistogram("request-size", conf.MetricRegistry)
b.requestLatency = getOrRegisterHistogram("request-latency-in-ms", conf.MetricRegistry)
b.outgoingByteRate = metrics.GetOrRegisterMeter("outgoing-byte-rate", conf.MetricRegistry)
b.responseRate = metrics.GetOrRegisterMeter("response-rate", conf.MetricRegistry)
b.responseSize = getOrRegisterHistogram("response-size", conf.MetricRegistry)
// Do not gather metrics for seeded broker (only used during bootstrap) because they share
// the same id (-1) and are already exposed through the global metrics above
if b.id >= 0 {
b.brokerIncomingByteRate = getOrRegisterBrokerMeter("incoming-byte-rate", b, conf.MetricRegistry)
b.brokerRequestRate = getOrRegisterBrokerMeter("request-rate", b, conf.MetricRegistry)
b.brokerRequestSize = getOrRegisterBrokerHistogram("request-size", b, conf.MetricRegistry)
b.brokerRequestLatency = getOrRegisterBrokerHistogram("request-latency-in-ms", b, conf.MetricRegistry)
b.brokerOutgoingByteRate = getOrRegisterBrokerMeter("outgoing-byte-rate", b, conf.MetricRegistry)
b.brokerResponseRate = getOrRegisterBrokerMeter("response-rate", b, conf.MetricRegistry)
b.brokerResponseSize = getOrRegisterBrokerHistogram("response-size", b, conf.MetricRegistry)
}
if conf.Net.SASL.Enable {
b.connErr = b.sendAndReceiveSASLPlainAuth()
if b.connErr != nil {
err = b.conn.Close()
if err == nil {
Logger.Printf("Closed connection to broker %s\n", b.addr)
} else {
Logger.Printf("Error while closing connection to broker %s: %s\n", b.addr, err)
}
b.conn = nil
atomic.StoreInt32(&b.opened, 0)
return
}
}
b.done = make(chan bool)
b.responses = make(chan responsePromise, b.conf.Net.MaxOpenRequests-1)
if b.id >= 0 {
Logger.Printf("Connected to broker at %s (registered as #%d)\n", b.addr, b.id)
} else {
Logger.Printf("Connected to broker at %s (unregistered)\n", b.addr)
}
go withRecover(b.responseReceiver)
})
return nil
}
// Connected returns true if the broker is connected and false otherwise. If the broker is not
// connected but it had tried to connect, the error from that connection attempt is also returned.
func (b *Broker) Connected() (bool, error) {
b.lock.Lock()
defer b.lock.Unlock()
return b.conn != nil, b.connErr
}
func (b *Broker) Close() error {
b.lock.Lock()
defer b.lock.Unlock()
if b.conn == nil {
return ErrNotConnected
}
close(b.responses)
<-b.done
err := b.conn.Close()
b.conn = nil
b.connErr = nil
b.done = nil
b.responses = nil
if b.id >= 0 {
b.conf.MetricRegistry.Unregister(getMetricNameForBroker("incoming-byte-rate", b))
b.conf.MetricRegistry.Unregister(getMetricNameForBroker("request-rate", b))
b.conf.MetricRegistry.Unregister(getMetricNameForBroker("outgoing-byte-rate", b))
b.conf.MetricRegistry.Unregister(getMetricNameForBroker("response-rate", b))
}
if err == nil {
Logger.Printf("Closed connection to broker %s\n", b.addr)
} else {
Logger.Printf("Error while closing connection to broker %s: %s\n", b.addr, err)
}
atomic.StoreInt32(&b.opened, 0)
return err
}
// ID returns the broker ID retrieved from Kafka's metadata, or -1 if that is not known.
func (b *Broker) ID() int32 {
return b.id
}
// Addr returns the broker address as either retrieved from Kafka's metadata or passed to NewBroker.
func (b *Broker) Addr() string {
return b.addr
}
func (b *Broker) GetMetadata(request *MetadataRequest) (*MetadataResponse, error) {
response := new(MetadataResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) GetConsumerMetadata(request *ConsumerMetadataRequest) (*ConsumerMetadataResponse, error) {
response := new(ConsumerMetadataResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) GetAvailableOffsets(request *OffsetRequest) (*OffsetResponse, error) {
response := new(OffsetResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) Produce(request *ProduceRequest) (*ProduceResponse, error) {
var response *ProduceResponse
var err error
if request.RequiredAcks == NoResponse {
err = b.sendAndReceive(request, nil)
} else {
response = new(ProduceResponse)
err = b.sendAndReceive(request, response)
}
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) Fetch(request *FetchRequest) (*FetchResponse, error) {
response := new(FetchResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) CommitOffset(request *OffsetCommitRequest) (*OffsetCommitResponse, error) {
response := new(OffsetCommitResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) FetchOffset(request *OffsetFetchRequest) (*OffsetFetchResponse, error) {
response := new(OffsetFetchResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) JoinGroup(request *JoinGroupRequest) (*JoinGroupResponse, error) {
response := new(JoinGroupResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) SyncGroup(request *SyncGroupRequest) (*SyncGroupResponse, error) {
response := new(SyncGroupResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) LeaveGroup(request *LeaveGroupRequest) (*LeaveGroupResponse, error) {
response := new(LeaveGroupResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) Heartbeat(request *HeartbeatRequest) (*HeartbeatResponse, error) {
response := new(HeartbeatResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) ListGroups(request *ListGroupsRequest) (*ListGroupsResponse, error) {
response := new(ListGroupsResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) DescribeGroups(request *DescribeGroupsRequest) (*DescribeGroupsResponse, error) {
response := new(DescribeGroupsResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) ApiVersions(request *ApiVersionsRequest) (*ApiVersionsResponse, error) {
response := new(ApiVersionsResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) send(rb protocolBody, promiseResponse bool) (*responsePromise, error) {
b.lock.Lock()
defer b.lock.Unlock()
if b.conn == nil {
if b.connErr != nil {
return nil, b.connErr
}
return nil, ErrNotConnected
}
if !b.conf.Version.IsAtLeast(rb.requiredVersion()) {
return nil, ErrUnsupportedVersion
}
req := &request{correlationID: b.correlationID, clientID: b.conf.ClientID, body: rb}
buf, err := encode(req, b.conf.MetricRegistry)
if err != nil {
return nil, err
}
err = b.conn.SetWriteDeadline(time.Now().Add(b.conf.Net.WriteTimeout))
if err != nil {
return nil, err
}
requestTime := time.Now()
bytes, err := b.conn.Write(buf)
b.updateOutgoingCommunicationMetrics(bytes)
if err != nil {
return nil, err
}
b.correlationID++
if !promiseResponse {
// Record request latency without the response
b.updateRequestLatencyMetrics(time.Since(requestTime))
return nil, nil
}
promise := responsePromise{requestTime, req.correlationID, make(chan []byte), make(chan error)}
b.responses <- promise
return &promise, nil
}
func (b *Broker) sendAndReceive(req protocolBody, res versionedDecoder) error {
promise, err := b.send(req, res != nil)
if err != nil {
return err
}
if promise == nil {
return nil
}
select {
case buf := <-promise.packets:
return versionedDecode(buf, res, req.version())
case err = <-promise.errors:
return err
}
}
func (b *Broker) decode(pd packetDecoder) (err error) {
b.id, err = pd.getInt32()
if err != nil {
return err
}
host, err := pd.getString()
if err != nil {
return err
}
port, err := pd.getInt32()
if err != nil {
return err
}
b.addr = net.JoinHostPort(host, fmt.Sprint(port))
if _, _, err := net.SplitHostPort(b.addr); err != nil {
return err
}
return nil
}
func (b *Broker) encode(pe packetEncoder) (err error) {
host, portstr, err := net.SplitHostPort(b.addr)
if err != nil {
return err
}
port, err := strconv.Atoi(portstr)
if err != nil {
return err
}
pe.putInt32(b.id)
err = pe.putString(host)
if err != nil {
return err
}
pe.putInt32(int32(port))
return nil
}
func (b *Broker) responseReceiver() {
var dead error
header := make([]byte, 8)
for response := range b.responses {
if dead != nil {
response.errors <- dead
continue
}
err := b.conn.SetReadDeadline(time.Now().Add(b.conf.Net.ReadTimeout))
if err != nil {
dead = err
response.errors <- err
continue
}
bytesReadHeader, err := io.ReadFull(b.conn, header)
requestLatency := time.Since(response.requestTime)
if err != nil {
b.updateIncomingCommunicationMetrics(bytesReadHeader, requestLatency)
dead = err
response.errors <- err
continue
}
decodedHeader := responseHeader{}
err = decode(header, &decodedHeader)
if err != nil {
b.updateIncomingCommunicationMetrics(bytesReadHeader, requestLatency)
dead = err
response.errors <- err
continue
}
if decodedHeader.correlationID != response.correlationID {
b.updateIncomingCommunicationMetrics(bytesReadHeader, requestLatency)
// TODO if decoded ID < cur ID, discard until we catch up
// TODO if decoded ID > cur ID, save it so when cur ID catches up we have a response
dead = PacketDecodingError{fmt.Sprintf("correlation ID didn't match, wanted %d, got %d", response.correlationID, decodedHeader.correlationID)}
response.errors <- dead
continue
}
buf := make([]byte, decodedHeader.length-4)
bytesReadBody, err := io.ReadFull(b.conn, buf)
b.updateIncomingCommunicationMetrics(bytesReadHeader+bytesReadBody, requestLatency)
if err != nil {
dead = err
response.errors <- err
continue
}
response.packets <- buf
}
close(b.done)
}
func (b *Broker) sendAndReceiveSASLPlainHandshake() error {
rb := &SaslHandshakeRequest{"PLAIN"}
req := &request{correlationID: b.correlationID, clientID: b.conf.ClientID, body: rb}
buf, err := encode(req, b.conf.MetricRegistry)
if err != nil {
return err
}
err = b.conn.SetWriteDeadline(time.Now().Add(b.conf.Net.WriteTimeout))
if err != nil {
return err
}
requestTime := time.Now()
bytes, err := b.conn.Write(buf)
b.updateOutgoingCommunicationMetrics(bytes)
if err != nil {
Logger.Printf("Failed to send SASL handshake %s: %s\n", b.addr, err.Error())
return err
}
b.correlationID++
//wait for the response
header := make([]byte, 8) // response header
_, err = io.ReadFull(b.conn, header)
if err != nil {
Logger.Printf("Failed to read SASL handshake header : %s\n", err.Error())
return err
}
length := binary.BigEndian.Uint32(header[:4])
payload := make([]byte, length-4)
n, err := io.ReadFull(b.conn, payload)
if err != nil {
Logger.Printf("Failed to read SASL handshake payload : %s\n", err.Error())
return err
}
b.updateIncomingCommunicationMetrics(n+8, time.Since(requestTime))
res := &SaslHandshakeResponse{}
err = versionedDecode(payload, res, 0)
if err != nil {
Logger.Printf("Failed to parse SASL handshake : %s\n", err.Error())
return err
}
if res.Err != ErrNoError {
Logger.Printf("Invalid SASL Mechanism : %s\n", res.Err.Error())
return res.Err
}
Logger.Print("Successful SASL handshake")
return nil
}
// Kafka 0.10.0 plans to support SASL Plain and Kerberos as per PR #812 (KIP-43)/(JIRA KAFKA-3149)
// Some hosted kafka services such as IBM Message Hub already offer SASL/PLAIN auth with Kafka 0.9
//
// In SASL Plain, Kafka expects the auth header to be in the following format
// Message format (from https://tools.ietf.org/html/rfc4616):
//
// message = [authzid] UTF8NUL authcid UTF8NUL passwd
// authcid = 1*SAFE ; MUST accept up to 255 octets
// authzid = 1*SAFE ; MUST accept up to 255 octets
// passwd = 1*SAFE ; MUST accept up to 255 octets
// UTF8NUL = %x00 ; UTF-8 encoded NUL character
//
// SAFE = UTF1 / UTF2 / UTF3 / UTF4
// ;; any UTF-8 encoded Unicode character except NUL
//
// When credentials are valid, Kafka returns a 4 byte array of null characters.
// When credentials are invalid, Kafka closes the connection. This does not seem to be the ideal way
// of responding to bad credentials but thats how its being done today.
func (b *Broker) sendAndReceiveSASLPlainAuth() error {
if b.conf.Net.SASL.Handshake {
handshakeErr := b.sendAndReceiveSASLPlainHandshake()
if handshakeErr != nil {
Logger.Printf("Error while performing SASL handshake %s\n", b.addr)
return handshakeErr
}
}
length := 1 + len(b.conf.Net.SASL.User) + 1 + len(b.conf.Net.SASL.Password)
authBytes := make([]byte, length+4) //4 byte length header + auth data
binary.BigEndian.PutUint32(authBytes, uint32(length))
copy(authBytes[4:], []byte("\x00"+b.conf.Net.SASL.User+"\x00"+b.conf.Net.SASL.Password))
err := b.conn.SetWriteDeadline(time.Now().Add(b.conf.Net.WriteTimeout))
if err != nil {
Logger.Printf("Failed to set write deadline when doing SASL auth with broker %s: %s\n", b.addr, err.Error())
return err
}
requestTime := time.Now()
bytesWritten, err := b.conn.Write(authBytes)
b.updateOutgoingCommunicationMetrics(bytesWritten)
if err != nil {
Logger.Printf("Failed to write SASL auth header to broker %s: %s\n", b.addr, err.Error())
return err
}
header := make([]byte, 4)
n, err := io.ReadFull(b.conn, header)
b.updateIncomingCommunicationMetrics(n, time.Since(requestTime))
// If the credentials are valid, we would get a 4 byte response filled with null characters.
// Otherwise, the broker closes the connection and we get an EOF
if err != nil {
Logger.Printf("Failed to read response while authenticating with SASL to broker %s: %s\n", b.addr, err.Error())
return err
}
Logger.Printf("SASL authentication successful with broker %s:%v - %v\n", b.addr, n, header)
return nil
}
func (b *Broker) updateIncomingCommunicationMetrics(bytes int, requestLatency time.Duration) {
b.updateRequestLatencyMetrics(requestLatency)
b.responseRate.Mark(1)
if b.brokerResponseRate != nil {
b.brokerResponseRate.Mark(1)
}
responseSize := int64(bytes)
b.incomingByteRate.Mark(responseSize)
if b.brokerIncomingByteRate != nil {
b.brokerIncomingByteRate.Mark(responseSize)
}
b.responseSize.Update(responseSize)
if b.brokerResponseSize != nil {
b.brokerResponseSize.Update(responseSize)
}
}
func (b *Broker) updateRequestLatencyMetrics(requestLatency time.Duration) {
requestLatencyInMs := int64(requestLatency / time.Millisecond)
b.requestLatency.Update(requestLatencyInMs)
if b.brokerRequestLatency != nil {
b.brokerRequestLatency.Update(requestLatencyInMs)
}
}
func (b *Broker) updateOutgoingCommunicationMetrics(bytes int) {
b.requestRate.Mark(1)
if b.brokerRequestRate != nil {
b.brokerRequestRate.Mark(1)
}
requestSize := int64(bytes)
b.outgoingByteRate.Mark(requestSize)
if b.brokerOutgoingByteRate != nil {
b.brokerOutgoingByteRate.Mark(requestSize)
}
b.requestSize.Update(requestSize)
if b.brokerRequestSize != nil {
b.brokerRequestSize.Update(requestSize)
}
}

794
vendor/github.com/Shopify/sarama/client.go generated vendored Normal file
View File

@ -0,0 +1,794 @@
package sarama
import (
"math/rand"
"sort"
"sync"
"time"
)
// Client is a generic Kafka client. It manages connections to one or more Kafka brokers.
// You MUST call Close() on a client to avoid leaks, it will not be garbage-collected
// automatically when it passes out of scope. It is safe to share a client amongst many
// users, however Kafka will process requests from a single client strictly in serial,
// so it is generally more efficient to use the default one client per producer/consumer.
type Client interface {
// Config returns the Config struct of the client. This struct should not be
// altered after it has been created.
Config() *Config
// Brokers returns the current set of active brokers as retrieved from cluster metadata.
Brokers() []*Broker
// Topics returns the set of available topics as retrieved from cluster metadata.
Topics() ([]string, error)
// Partitions returns the sorted list of all partition IDs for the given topic.
Partitions(topic string) ([]int32, error)
// WritablePartitions returns the sorted list of all writable partition IDs for
// the given topic, where "writable" means "having a valid leader accepting
// writes".
WritablePartitions(topic string) ([]int32, error)
// Leader returns the broker object that is the leader of the current
// topic/partition, as determined by querying the cluster metadata.
Leader(topic string, partitionID int32) (*Broker, error)
// Replicas returns the set of all replica IDs for the given partition.
Replicas(topic string, partitionID int32) ([]int32, error)
// InSyncReplicas returns the set of all in-sync replica IDs for the given
// partition. In-sync replicas are replicas which are fully caught up with
// the partition leader.
InSyncReplicas(topic string, partitionID int32) ([]int32, error)
// RefreshMetadata takes a list of topics and queries the cluster to refresh the
// available metadata for those topics. If no topics are provided, it will refresh
// metadata for all topics.
RefreshMetadata(topics ...string) error
// GetOffset queries the cluster to get the most recent available offset at the
// given time (in milliseconds) on the topic/partition combination.
// Time should be OffsetOldest for the earliest available offset,
// OffsetNewest for the offset of the message that will be produced next, or a time.
GetOffset(topic string, partitionID int32, time int64) (int64, error)
// Coordinator returns the coordinating broker for a consumer group. It will
// return a locally cached value if it's available. You can call
// RefreshCoordinator to update the cached value. This function only works on
// Kafka 0.8.2 and higher.
Coordinator(consumerGroup string) (*Broker, error)
// RefreshCoordinator retrieves the coordinator for a consumer group and stores it
// in local cache. This function only works on Kafka 0.8.2 and higher.
RefreshCoordinator(consumerGroup string) error
// Close shuts down all broker connections managed by this client. It is required
// to call this function before a client object passes out of scope, as it will
// otherwise leak memory. You must close any Producers or Consumers using a client
// before you close the client.
Close() error
// Closed returns true if the client has already had Close called on it
Closed() bool
}
const (
// OffsetNewest stands for the log head offset, i.e. the offset that will be
// assigned to the next message that will be produced to the partition. You
// can send this to a client's GetOffset method to get this offset, or when
// calling ConsumePartition to start consuming new messages.
OffsetNewest int64 = -1
// OffsetOldest stands for the oldest offset available on the broker for a
// partition. You can send this to a client's GetOffset method to get this
// offset, or when calling ConsumePartition to start consuming from the
// oldest offset that is still available on the broker.
OffsetOldest int64 = -2
)
type client struct {
conf *Config
closer, closed chan none // for shutting down background metadata updater
// the broker addresses given to us through the constructor are not guaranteed to be returned in
// the cluster metadata (I *think* it only returns brokers who are currently leading partitions?)
// so we store them separately
seedBrokers []*Broker
deadSeeds []*Broker
brokers map[int32]*Broker // maps broker ids to brokers
metadata map[string]map[int32]*PartitionMetadata // maps topics to partition ids to metadata
coordinators map[string]int32 // Maps consumer group names to coordinating broker IDs
// If the number of partitions is large, we can get some churn calling cachedPartitions,
// so the result is cached. It is important to update this value whenever metadata is changed
cachedPartitionsResults map[string][maxPartitionIndex][]int32
lock sync.RWMutex // protects access to the maps that hold cluster state.
}
// NewClient creates a new Client. It connects to one of the given broker addresses
// and uses that broker to automatically fetch metadata on the rest of the kafka cluster. If metadata cannot
// be retrieved from any of the given broker addresses, the client is not created.
func NewClient(addrs []string, conf *Config) (Client, error) {
Logger.Println("Initializing new client")
if conf == nil {
conf = NewConfig()
}
if err := conf.Validate(); err != nil {
return nil, err
}
if len(addrs) < 1 {
return nil, ConfigurationError("You must provide at least one broker address")
}
client := &client{
conf: conf,
closer: make(chan none),
closed: make(chan none),
brokers: make(map[int32]*Broker),
metadata: make(map[string]map[int32]*PartitionMetadata),
cachedPartitionsResults: make(map[string][maxPartitionIndex][]int32),
coordinators: make(map[string]int32),
}
random := rand.New(rand.NewSource(time.Now().UnixNano()))
for _, index := range random.Perm(len(addrs)) {
client.seedBrokers = append(client.seedBrokers, NewBroker(addrs[index]))
}
if conf.Metadata.Full {
// do an initial fetch of all cluster metadata by specifying an empty list of topics
err := client.RefreshMetadata()
switch err {
case nil:
break
case ErrLeaderNotAvailable, ErrReplicaNotAvailable, ErrTopicAuthorizationFailed, ErrClusterAuthorizationFailed:
// indicates that maybe part of the cluster is down, but is not fatal to creating the client
Logger.Println(err)
default:
close(client.closed) // we haven't started the background updater yet, so we have to do this manually
_ = client.Close()
return nil, err
}
}
go withRecover(client.backgroundMetadataUpdater)
Logger.Println("Successfully initialized new client")
return client, nil
}
func (client *client) Config() *Config {
return client.conf
}
func (client *client) Brokers() []*Broker {
client.lock.RLock()
defer client.lock.RUnlock()
brokers := make([]*Broker, 0)
for _, broker := range client.brokers {
brokers = append(brokers, broker)
}
return brokers
}
func (client *client) Close() error {
if client.Closed() {
// Chances are this is being called from a defer() and the error will go unobserved
// so we go ahead and log the event in this case.
Logger.Printf("Close() called on already closed client")
return ErrClosedClient
}
// shutdown and wait for the background thread before we take the lock, to avoid races
close(client.closer)
<-client.closed
client.lock.Lock()
defer client.lock.Unlock()
Logger.Println("Closing Client")
for _, broker := range client.brokers {
safeAsyncClose(broker)
}
for _, broker := range client.seedBrokers {
safeAsyncClose(broker)
}
client.brokers = nil
client.metadata = nil
return nil
}
func (client *client) Closed() bool {
return client.brokers == nil
}
func (client *client) Topics() ([]string, error) {
if client.Closed() {
return nil, ErrClosedClient
}
client.lock.RLock()
defer client.lock.RUnlock()
ret := make([]string, 0, len(client.metadata))
for topic := range client.metadata {
ret = append(ret, topic)
}
return ret, nil
}
func (client *client) Partitions(topic string) ([]int32, error) {
if client.Closed() {
return nil, ErrClosedClient
}
partitions := client.cachedPartitions(topic, allPartitions)
if len(partitions) == 0 {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
partitions = client.cachedPartitions(topic, allPartitions)
}
if partitions == nil {
return nil, ErrUnknownTopicOrPartition
}
return partitions, nil
}
func (client *client) WritablePartitions(topic string) ([]int32, error) {
if client.Closed() {
return nil, ErrClosedClient
}
partitions := client.cachedPartitions(topic, writablePartitions)
// len==0 catches when it's nil (no such topic) and the odd case when every single
// partition is undergoing leader election simultaneously. Callers have to be able to handle
// this function returning an empty slice (which is a valid return value) but catching it
// here the first time (note we *don't* catch it below where we return ErrUnknownTopicOrPartition) triggers
// a metadata refresh as a nicety so callers can just try again and don't have to manually
// trigger a refresh (otherwise they'd just keep getting a stale cached copy).
if len(partitions) == 0 {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
partitions = client.cachedPartitions(topic, writablePartitions)
}
if partitions == nil {
return nil, ErrUnknownTopicOrPartition
}
return partitions, nil
}
func (client *client) Replicas(topic string, partitionID int32) ([]int32, error) {
if client.Closed() {
return nil, ErrClosedClient
}
metadata := client.cachedMetadata(topic, partitionID)
if metadata == nil {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
metadata = client.cachedMetadata(topic, partitionID)
}
if metadata == nil {
return nil, ErrUnknownTopicOrPartition
}
if metadata.Err == ErrReplicaNotAvailable {
return dupInt32Slice(metadata.Replicas), metadata.Err
}
return dupInt32Slice(metadata.Replicas), nil
}
func (client *client) InSyncReplicas(topic string, partitionID int32) ([]int32, error) {
if client.Closed() {
return nil, ErrClosedClient
}
metadata := client.cachedMetadata(topic, partitionID)
if metadata == nil {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
metadata = client.cachedMetadata(topic, partitionID)
}
if metadata == nil {
return nil, ErrUnknownTopicOrPartition
}
if metadata.Err == ErrReplicaNotAvailable {
return dupInt32Slice(metadata.Isr), metadata.Err
}
return dupInt32Slice(metadata.Isr), nil
}
func (client *client) Leader(topic string, partitionID int32) (*Broker, error) {
if client.Closed() {
return nil, ErrClosedClient
}
leader, err := client.cachedLeader(topic, partitionID)
if leader == nil {
err = client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
leader, err = client.cachedLeader(topic, partitionID)
}
return leader, err
}
func (client *client) RefreshMetadata(topics ...string) error {
if client.Closed() {
return ErrClosedClient
}
// Prior to 0.8.2, Kafka will throw exceptions on an empty topic and not return a proper
// error. This handles the case by returning an error instead of sending it
// off to Kafka. See: https://github.com/Shopify/sarama/pull/38#issuecomment-26362310
for _, topic := range topics {
if len(topic) == 0 {
return ErrInvalidTopic // this is the error that 0.8.2 and later correctly return
}
}
return client.tryRefreshMetadata(topics, client.conf.Metadata.Retry.Max)
}
func (client *client) GetOffset(topic string, partitionID int32, time int64) (int64, error) {
if client.Closed() {
return -1, ErrClosedClient
}
offset, err := client.getOffset(topic, partitionID, time)
if err != nil {
if err := client.RefreshMetadata(topic); err != nil {
return -1, err
}
return client.getOffset(topic, partitionID, time)
}
return offset, err
}
func (client *client) Coordinator(consumerGroup string) (*Broker, error) {
if client.Closed() {
return nil, ErrClosedClient
}
coordinator := client.cachedCoordinator(consumerGroup)
if coordinator == nil {
if err := client.RefreshCoordinator(consumerGroup); err != nil {
return nil, err
}
coordinator = client.cachedCoordinator(consumerGroup)
}
if coordinator == nil {
return nil, ErrConsumerCoordinatorNotAvailable
}
_ = coordinator.Open(client.conf)
return coordinator, nil
}
func (client *client) RefreshCoordinator(consumerGroup string) error {
if client.Closed() {
return ErrClosedClient
}
response, err := client.getConsumerMetadata(consumerGroup, client.conf.Metadata.Retry.Max)
if err != nil {
return err
}
client.lock.Lock()
defer client.lock.Unlock()
client.registerBroker(response.Coordinator)
client.coordinators[consumerGroup] = response.Coordinator.ID()
return nil
}
// private broker management helpers
// registerBroker makes sure a broker received by a Metadata or Coordinator request is registered
// in the brokers map. It returns the broker that is registered, which may be the provided broker,
// or a previously registered Broker instance. You must hold the write lock before calling this function.
func (client *client) registerBroker(broker *Broker) {
if client.brokers[broker.ID()] == nil {
client.brokers[broker.ID()] = broker
Logger.Printf("client/brokers registered new broker #%d at %s", broker.ID(), broker.Addr())
} else if broker.Addr() != client.brokers[broker.ID()].Addr() {
safeAsyncClose(client.brokers[broker.ID()])
client.brokers[broker.ID()] = broker
Logger.Printf("client/brokers replaced registered broker #%d with %s", broker.ID(), broker.Addr())
}
}
// deregisterBroker removes a broker from the seedsBroker list, and if it's
// not the seedbroker, removes it from brokers map completely.
func (client *client) deregisterBroker(broker *Broker) {
client.lock.Lock()
defer client.lock.Unlock()
if len(client.seedBrokers) > 0 && broker == client.seedBrokers[0] {
client.deadSeeds = append(client.deadSeeds, broker)
client.seedBrokers = client.seedBrokers[1:]
} else {
// we do this so that our loop in `tryRefreshMetadata` doesn't go on forever,
// but we really shouldn't have to; once that loop is made better this case can be
// removed, and the function generally can be renamed from `deregisterBroker` to
// `nextSeedBroker` or something
Logger.Printf("client/brokers deregistered broker #%d at %s", broker.ID(), broker.Addr())
delete(client.brokers, broker.ID())
}
}
func (client *client) resurrectDeadBrokers() {
client.lock.Lock()
defer client.lock.Unlock()
Logger.Printf("client/brokers resurrecting %d dead seed brokers", len(client.deadSeeds))
client.seedBrokers = append(client.seedBrokers, client.deadSeeds...)
client.deadSeeds = nil
}
func (client *client) any() *Broker {
client.lock.RLock()
defer client.lock.RUnlock()
if len(client.seedBrokers) > 0 {
_ = client.seedBrokers[0].Open(client.conf)
return client.seedBrokers[0]
}
// not guaranteed to be random *or* deterministic
for _, broker := range client.brokers {
_ = broker.Open(client.conf)
return broker
}
return nil
}
// private caching/lazy metadata helpers
type partitionType int
const (
allPartitions partitionType = iota
writablePartitions
// If you add any more types, update the partition cache in update()
// Ensure this is the last partition type value
maxPartitionIndex
)
func (client *client) cachedMetadata(topic string, partitionID int32) *PartitionMetadata {
client.lock.RLock()
defer client.lock.RUnlock()
partitions := client.metadata[topic]
if partitions != nil {
return partitions[partitionID]
}
return nil
}
func (client *client) cachedPartitions(topic string, partitionSet partitionType) []int32 {
client.lock.RLock()
defer client.lock.RUnlock()
partitions, exists := client.cachedPartitionsResults[topic]
if !exists {
return nil
}
return partitions[partitionSet]
}
func (client *client) setPartitionCache(topic string, partitionSet partitionType) []int32 {
partitions := client.metadata[topic]
if partitions == nil {
return nil
}
ret := make([]int32, 0, len(partitions))
for _, partition := range partitions {
if partitionSet == writablePartitions && partition.Err == ErrLeaderNotAvailable {
continue
}
ret = append(ret, partition.ID)
}
sort.Sort(int32Slice(ret))
return ret
}
func (client *client) cachedLeader(topic string, partitionID int32) (*Broker, error) {
client.lock.RLock()
defer client.lock.RUnlock()
partitions := client.metadata[topic]
if partitions != nil {
metadata, ok := partitions[partitionID]
if ok {
if metadata.Err == ErrLeaderNotAvailable {
return nil, ErrLeaderNotAvailable
}
b := client.brokers[metadata.Leader]
if b == nil {
return nil, ErrLeaderNotAvailable
}
_ = b.Open(client.conf)
return b, nil
}
}
return nil, ErrUnknownTopicOrPartition
}
func (client *client) getOffset(topic string, partitionID int32, time int64) (int64, error) {
broker, err := client.Leader(topic, partitionID)
if err != nil {
return -1, err
}
request := &OffsetRequest{}
if client.conf.Version.IsAtLeast(V0_10_1_0) {
request.Version = 1
}
request.AddBlock(topic, partitionID, time, 1)
response, err := broker.GetAvailableOffsets(request)
if err != nil {
_ = broker.Close()
return -1, err
}
block := response.GetBlock(topic, partitionID)
if block == nil {
_ = broker.Close()
return -1, ErrIncompleteResponse
}
if block.Err != ErrNoError {
return -1, block.Err
}
if len(block.Offsets) != 1 {
return -1, ErrOffsetOutOfRange
}
return block.Offsets[0], nil
}
// core metadata update logic
func (client *client) backgroundMetadataUpdater() {
defer close(client.closed)
if client.conf.Metadata.RefreshFrequency == time.Duration(0) {
return
}
ticker := time.NewTicker(client.conf.Metadata.RefreshFrequency)
defer ticker.Stop()
for {
select {
case <-ticker.C:
topics := []string{}
if !client.conf.Metadata.Full {
if specificTopics, err := client.Topics(); err != nil {
Logger.Println("Client background metadata topic load:", err)
break
} else if len(specificTopics) == 0 {
Logger.Println("Client background metadata update: no specific topics to update")
break
} else {
topics = specificTopics
}
}
if err := client.RefreshMetadata(topics...); err != nil {
Logger.Println("Client background metadata update:", err)
}
case <-client.closer:
return
}
}
}
func (client *client) tryRefreshMetadata(topics []string, attemptsRemaining int) error {
retry := func(err error) error {
if attemptsRemaining > 0 {
Logger.Printf("client/metadata retrying after %dms... (%d attempts remaining)\n", client.conf.Metadata.Retry.Backoff/time.Millisecond, attemptsRemaining)
time.Sleep(client.conf.Metadata.Retry.Backoff)
return client.tryRefreshMetadata(topics, attemptsRemaining-1)
}
return err
}
for broker := client.any(); broker != nil; broker = client.any() {
if len(topics) > 0 {
Logger.Printf("client/metadata fetching metadata for %v from broker %s\n", topics, broker.addr)
} else {
Logger.Printf("client/metadata fetching metadata for all topics from broker %s\n", broker.addr)
}
response, err := broker.GetMetadata(&MetadataRequest{Topics: topics})
switch err.(type) {
case nil:
// valid response, use it
shouldRetry, err := client.updateMetadata(response)
if shouldRetry {
Logger.Println("client/metadata found some partitions to be leaderless")
return retry(err) // note: err can be nil
}
return err
case PacketEncodingError:
// didn't even send, return the error
return err
default:
// some other error, remove that broker and try again
Logger.Println("client/metadata got error from broker while fetching metadata:", err)
_ = broker.Close()
client.deregisterBroker(broker)
}
}
Logger.Println("client/metadata no available broker to send metadata request to")
client.resurrectDeadBrokers()
return retry(ErrOutOfBrokers)
}
// if no fatal error, returns a list of topics that need retrying due to ErrLeaderNotAvailable
func (client *client) updateMetadata(data *MetadataResponse) (retry bool, err error) {
client.lock.Lock()
defer client.lock.Unlock()
// For all the brokers we received:
// - if it is a new ID, save it
// - if it is an existing ID, but the address we have is stale, discard the old one and save it
// - otherwise ignore it, replacing our existing one would just bounce the connection
for _, broker := range data.Brokers {
client.registerBroker(broker)
}
for _, topic := range data.Topics {
delete(client.metadata, topic.Name)
delete(client.cachedPartitionsResults, topic.Name)
switch topic.Err {
case ErrNoError:
break
case ErrInvalidTopic, ErrTopicAuthorizationFailed: // don't retry, don't store partial results
err = topic.Err
continue
case ErrUnknownTopicOrPartition: // retry, do not store partial partition results
err = topic.Err
retry = true
continue
case ErrLeaderNotAvailable: // retry, but store partial partition results
retry = true
break
default: // don't retry, don't store partial results
Logger.Printf("Unexpected topic-level metadata error: %s", topic.Err)
err = topic.Err
continue
}
client.metadata[topic.Name] = make(map[int32]*PartitionMetadata, len(topic.Partitions))
for _, partition := range topic.Partitions {
client.metadata[topic.Name][partition.ID] = partition
if partition.Err == ErrLeaderNotAvailable {
retry = true
}
}
var partitionCache [maxPartitionIndex][]int32
partitionCache[allPartitions] = client.setPartitionCache(topic.Name, allPartitions)
partitionCache[writablePartitions] = client.setPartitionCache(topic.Name, writablePartitions)
client.cachedPartitionsResults[topic.Name] = partitionCache
}
return
}
func (client *client) cachedCoordinator(consumerGroup string) *Broker {
client.lock.RLock()
defer client.lock.RUnlock()
if coordinatorID, ok := client.coordinators[consumerGroup]; ok {
return client.brokers[coordinatorID]
}
return nil
}
func (client *client) getConsumerMetadata(consumerGroup string, attemptsRemaining int) (*ConsumerMetadataResponse, error) {
retry := func(err error) (*ConsumerMetadataResponse, error) {
if attemptsRemaining > 0 {
Logger.Printf("client/coordinator retrying after %dms... (%d attempts remaining)\n", client.conf.Metadata.Retry.Backoff/time.Millisecond, attemptsRemaining)
time.Sleep(client.conf.Metadata.Retry.Backoff)
return client.getConsumerMetadata(consumerGroup, attemptsRemaining-1)
}
return nil, err
}
for broker := client.any(); broker != nil; broker = client.any() {
Logger.Printf("client/coordinator requesting coordinator for consumergroup %s from %s\n", consumerGroup, broker.Addr())
request := new(ConsumerMetadataRequest)
request.ConsumerGroup = consumerGroup
response, err := broker.GetConsumerMetadata(request)
if err != nil {
Logger.Printf("client/coordinator request to broker %s failed: %s\n", broker.Addr(), err)
switch err.(type) {
case PacketEncodingError:
return nil, err
default:
_ = broker.Close()
client.deregisterBroker(broker)
continue
}
}
switch response.Err {
case ErrNoError:
Logger.Printf("client/coordinator coordinator for consumergroup %s is #%d (%s)\n", consumerGroup, response.Coordinator.ID(), response.Coordinator.Addr())
return response, nil
case ErrConsumerCoordinatorNotAvailable:
Logger.Printf("client/coordinator coordinator for consumer group %s is not available\n", consumerGroup)
// This is very ugly, but this scenario will only happen once per cluster.
// The __consumer_offsets topic only has to be created one time.
// The number of partitions not configurable, but partition 0 should always exist.
if _, err := client.Leader("__consumer_offsets", 0); err != nil {
Logger.Printf("client/coordinator the __consumer_offsets topic is not initialized completely yet. Waiting 2 seconds...\n")
time.Sleep(2 * time.Second)
}
return retry(ErrConsumerCoordinatorNotAvailable)
default:
return nil, response.Err
}
}
Logger.Println("client/coordinator no available broker to send consumer metadata request to")
client.resurrectDeadBrokers()
return retry(ErrOutOfBrokers)
}

442
vendor/github.com/Shopify/sarama/config.go generated vendored Normal file
View File

@ -0,0 +1,442 @@
package sarama
import (
"crypto/tls"
"regexp"
"time"
"github.com/rcrowley/go-metrics"
)
const defaultClientID = "sarama"
var validID = regexp.MustCompile(`\A[A-Za-z0-9._-]+\z`)
// Config is used to pass multiple configuration options to Sarama's constructors.
type Config struct {
// Net is the namespace for network-level properties used by the Broker, and
// shared by the Client/Producer/Consumer.
Net struct {
// How many outstanding requests a connection is allowed to have before
// sending on it blocks (default 5).
MaxOpenRequests int
// All three of the below configurations are similar to the
// `socket.timeout.ms` setting in JVM kafka. All of them default
// to 30 seconds.
DialTimeout time.Duration // How long to wait for the initial connection.
ReadTimeout time.Duration // How long to wait for a response.
WriteTimeout time.Duration // How long to wait for a transmit.
TLS struct {
// Whether or not to use TLS when connecting to the broker
// (defaults to false).
Enable bool
// The TLS configuration to use for secure connections if
// enabled (defaults to nil).
Config *tls.Config
}
// SASL based authentication with broker. While there are multiple SASL authentication methods
// the current implementation is limited to plaintext (SASL/PLAIN) authentication
SASL struct {
// Whether or not to use SASL authentication when connecting to the broker
// (defaults to false).
Enable bool
// Whether or not to send the Kafka SASL handshake first if enabled
// (defaults to true). You should only set this to false if you're using
// a non-Kafka SASL proxy.
Handshake bool
//username and password for SASL/PLAIN authentication
User string
Password string
}
// KeepAlive specifies the keep-alive period for an active network connection.
// If zero, keep-alives are disabled. (default is 0: disabled).
KeepAlive time.Duration
}
// Metadata is the namespace for metadata management properties used by the
// Client, and shared by the Producer/Consumer.
Metadata struct {
Retry struct {
// The total number of times to retry a metadata request when the
// cluster is in the middle of a leader election (default 3).
Max int
// How long to wait for leader election to occur before retrying
// (default 250ms). Similar to the JVM's `retry.backoff.ms`.
Backoff time.Duration
}
// How frequently to refresh the cluster metadata in the background.
// Defaults to 10 minutes. Set to 0 to disable. Similar to
// `topic.metadata.refresh.interval.ms` in the JVM version.
RefreshFrequency time.Duration
// Whether to maintain a full set of metadata for all topics, or just
// the minimal set that has been necessary so far. The full set is simpler
// and usually more convenient, but can take up a substantial amount of
// memory if you have many topics and partitions. Defaults to true.
Full bool
}
// Producer is the namespace for configuration related to producing messages,
// used by the Producer.
Producer struct {
// The maximum permitted size of a message (defaults to 1000000). Should be
// set equal to or smaller than the broker's `message.max.bytes`.
MaxMessageBytes int
// The level of acknowledgement reliability needed from the broker (defaults
// to WaitForLocal). Equivalent to the `request.required.acks` setting of the
// JVM producer.
RequiredAcks RequiredAcks
// The maximum duration the broker will wait the receipt of the number of
// RequiredAcks (defaults to 10 seconds). This is only relevant when
// RequiredAcks is set to WaitForAll or a number > 1. Only supports
// millisecond resolution, nanoseconds will be truncated. Equivalent to
// the JVM producer's `request.timeout.ms` setting.
Timeout time.Duration
// The type of compression to use on messages (defaults to no compression).
// Similar to `compression.codec` setting of the JVM producer.
Compression CompressionCodec
// Generates partitioners for choosing the partition to send messages to
// (defaults to hashing the message key). Similar to the `partitioner.class`
// setting for the JVM producer.
Partitioner PartitionerConstructor
// Return specifies what channels will be populated. If they are set to true,
// you must read from the respective channels to prevent deadlock. If,
// however, this config is used to create a `SyncProducer`, both must be set
// to true and you shall not read from the channels since the producer does
// this internally.
Return struct {
// If enabled, successfully delivered messages will be returned on the
// Successes channel (default disabled).
Successes bool
// If enabled, messages that failed to deliver will be returned on the
// Errors channel, including error (default enabled).
Errors bool
}
// The following config options control how often messages are batched up and
// sent to the broker. By default, messages are sent as fast as possible, and
// all messages received while the current batch is in-flight are placed
// into the subsequent batch.
Flush struct {
// The best-effort number of bytes needed to trigger a flush. Use the
// global sarama.MaxRequestSize to set a hard upper limit.
Bytes int
// The best-effort number of messages needed to trigger a flush. Use
// `MaxMessages` to set a hard upper limit.
Messages int
// The best-effort frequency of flushes. Equivalent to
// `queue.buffering.max.ms` setting of JVM producer.
Frequency time.Duration
// The maximum number of messages the producer will send in a single
// broker request. Defaults to 0 for unlimited. Similar to
// `queue.buffering.max.messages` in the JVM producer.
MaxMessages int
}
Retry struct {
// The total number of times to retry sending a message (default 3).
// Similar to the `message.send.max.retries` setting of the JVM producer.
Max int
// How long to wait for the cluster to settle between retries
// (default 100ms). Similar to the `retry.backoff.ms` setting of the
// JVM producer.
Backoff time.Duration
}
}
// Consumer is the namespace for configuration related to consuming messages,
// used by the Consumer.
//
// Note that Sarama's Consumer type does not currently support automatic
// consumer-group rebalancing and offset tracking. For Zookeeper-based
// tracking (Kafka 0.8.2 and earlier), the https://github.com/wvanbergen/kafka
// library builds on Sarama to add this support. For Kafka-based tracking
// (Kafka 0.9 and later), the https://github.com/bsm/sarama-cluster library
// builds on Sarama to add this support.
Consumer struct {
Retry struct {
// How long to wait after a failing to read from a partition before
// trying again (default 2s).
Backoff time.Duration
}
// Fetch is the namespace for controlling how many bytes are retrieved by any
// given request.
Fetch struct {
// The minimum number of message bytes to fetch in a request - the broker
// will wait until at least this many are available. The default is 1,
// as 0 causes the consumer to spin when no messages are available.
// Equivalent to the JVM's `fetch.min.bytes`.
Min int32
// The default number of message bytes to fetch from the broker in each
// request (default 32768). This should be larger than the majority of
// your messages, or else the consumer will spend a lot of time
// negotiating sizes and not actually consuming. Similar to the JVM's
// `fetch.message.max.bytes`.
Default int32
// The maximum number of message bytes to fetch from the broker in a
// single request. Messages larger than this will return
// ErrMessageTooLarge and will not be consumable, so you must be sure
// this is at least as large as your largest message. Defaults to 0
// (no limit). Similar to the JVM's `fetch.message.max.bytes`. The
// global `sarama.MaxResponseSize` still applies.
Max int32
}
// The maximum amount of time the broker will wait for Consumer.Fetch.Min
// bytes to become available before it returns fewer than that anyways. The
// default is 250ms, since 0 causes the consumer to spin when no events are
// available. 100-500ms is a reasonable range for most cases. Kafka only
// supports precision up to milliseconds; nanoseconds will be truncated.
// Equivalent to the JVM's `fetch.wait.max.ms`.
MaxWaitTime time.Duration
// The maximum amount of time the consumer expects a message takes to
// process for the user. If writing to the Messages channel takes longer
// than this, that partition will stop fetching more messages until it
// can proceed again.
// Note that, since the Messages channel is buffered, the actual grace time is
// (MaxProcessingTime * ChanneBufferSize). Defaults to 100ms.
// If a message is not written to the Messages channel between two ticks
// of the expiryTicker then a timeout is detected.
// Using a ticker instead of a timer to detect timeouts should typically
// result in many fewer calls to Timer functions which may result in a
// significant performance improvement if many messages are being sent
// and timeouts are infrequent.
// The disadvantage of using a ticker instead of a timer is that
// timeouts will be less accurate. That is, the effective timeout could
// be between `MaxProcessingTime` and `2 * MaxProcessingTime`. For
// example, if `MaxProcessingTime` is 100ms then a delay of 180ms
// between two messages being sent may not be recognized as a timeout.
MaxProcessingTime time.Duration
// Return specifies what channels will be populated. If they are set to true,
// you must read from them to prevent deadlock.
Return struct {
// If enabled, any errors that occurred while consuming are returned on
// the Errors channel (default disabled).
Errors bool
}
// Offsets specifies configuration for how and when to commit consumed
// offsets. This currently requires the manual use of an OffsetManager
// but will eventually be automated.
Offsets struct {
// How frequently to commit updated offsets. Defaults to 1s.
CommitInterval time.Duration
// The initial offset to use if no offset was previously committed.
// Should be OffsetNewest or OffsetOldest. Defaults to OffsetNewest.
Initial int64
// The retention duration for committed offsets. If zero, disabled
// (in which case the `offsets.retention.minutes` option on the
// broker will be used). Kafka only supports precision up to
// milliseconds; nanoseconds will be truncated. Requires Kafka
// broker version 0.9.0 or later.
// (default is 0: disabled).
Retention time.Duration
}
}
// A user-provided string sent with every request to the brokers for logging,
// debugging, and auditing purposes. Defaults to "sarama", but you should
// probably set it to something specific to your application.
ClientID string
// The number of events to buffer in internal and external channels. This
// permits the producer and consumer to continue processing some messages
// in the background while user code is working, greatly improving throughput.
// Defaults to 256.
ChannelBufferSize int
// The version of Kafka that Sarama will assume it is running against.
// Defaults to the oldest supported stable version. Since Kafka provides
// backwards-compatibility, setting it to a version older than you have
// will not break anything, although it may prevent you from using the
// latest features. Setting it to a version greater than you are actually
// running may lead to random breakage.
Version KafkaVersion
// The registry to define metrics into.
// Defaults to a local registry.
// If you want to disable metrics gathering, set "metrics.UseNilMetrics" to "true"
// prior to starting Sarama.
// See Examples on how to use the metrics registry
MetricRegistry metrics.Registry
}
// NewConfig returns a new configuration instance with sane defaults.
func NewConfig() *Config {
c := &Config{}
c.Net.MaxOpenRequests = 5
c.Net.DialTimeout = 30 * time.Second
c.Net.ReadTimeout = 30 * time.Second
c.Net.WriteTimeout = 30 * time.Second
c.Net.SASL.Handshake = true
c.Metadata.Retry.Max = 3
c.Metadata.Retry.Backoff = 250 * time.Millisecond
c.Metadata.RefreshFrequency = 10 * time.Minute
c.Metadata.Full = true
c.Producer.MaxMessageBytes = 1000000
c.Producer.RequiredAcks = WaitForLocal
c.Producer.Timeout = 10 * time.Second
c.Producer.Partitioner = NewHashPartitioner
c.Producer.Retry.Max = 3
c.Producer.Retry.Backoff = 100 * time.Millisecond
c.Producer.Return.Errors = true
c.Consumer.Fetch.Min = 1
c.Consumer.Fetch.Default = 32768
c.Consumer.Retry.Backoff = 2 * time.Second
c.Consumer.MaxWaitTime = 250 * time.Millisecond
c.Consumer.MaxProcessingTime = 100 * time.Millisecond
c.Consumer.Return.Errors = false
c.Consumer.Offsets.CommitInterval = 1 * time.Second
c.Consumer.Offsets.Initial = OffsetNewest
c.ClientID = defaultClientID
c.ChannelBufferSize = 256
c.Version = minVersion
c.MetricRegistry = metrics.NewRegistry()
return c
}
// Validate checks a Config instance. It will return a
// ConfigurationError if the specified values don't make sense.
func (c *Config) Validate() error {
// some configuration values should be warned on but not fail completely, do those first
if c.Net.TLS.Enable == false && c.Net.TLS.Config != nil {
Logger.Println("Net.TLS is disabled but a non-nil configuration was provided.")
}
if c.Net.SASL.Enable == false {
if c.Net.SASL.User != "" {
Logger.Println("Net.SASL is disabled but a non-empty username was provided.")
}
if c.Net.SASL.Password != "" {
Logger.Println("Net.SASL is disabled but a non-empty password was provided.")
}
}
if c.Producer.RequiredAcks > 1 {
Logger.Println("Producer.RequiredAcks > 1 is deprecated and will raise an exception with kafka >= 0.8.2.0.")
}
if c.Producer.MaxMessageBytes >= int(MaxRequestSize) {
Logger.Println("Producer.MaxMessageBytes must be smaller than MaxRequestSize; it will be ignored.")
}
if c.Producer.Flush.Bytes >= int(MaxRequestSize) {
Logger.Println("Producer.Flush.Bytes must be smaller than MaxRequestSize; it will be ignored.")
}
if (c.Producer.Flush.Bytes > 0 || c.Producer.Flush.Messages > 0) && c.Producer.Flush.Frequency == 0 {
Logger.Println("Producer.Flush: Bytes or Messages are set, but Frequency is not; messages may not get flushed.")
}
if c.Producer.Timeout%time.Millisecond != 0 {
Logger.Println("Producer.Timeout only supports millisecond resolution; nanoseconds will be truncated.")
}
if c.Consumer.MaxWaitTime < 100*time.Millisecond {
Logger.Println("Consumer.MaxWaitTime is very low, which can cause high CPU and network usage. See documentation for details.")
}
if c.Consumer.MaxWaitTime%time.Millisecond != 0 {
Logger.Println("Consumer.MaxWaitTime only supports millisecond precision; nanoseconds will be truncated.")
}
if c.Consumer.Offsets.Retention%time.Millisecond != 0 {
Logger.Println("Consumer.Offsets.Retention only supports millisecond precision; nanoseconds will be truncated.")
}
if c.ClientID == defaultClientID {
Logger.Println("ClientID is the default of 'sarama', you should consider setting it to something application-specific.")
}
// validate Net values
switch {
case c.Net.MaxOpenRequests <= 0:
return ConfigurationError("Net.MaxOpenRequests must be > 0")
case c.Net.DialTimeout <= 0:
return ConfigurationError("Net.DialTimeout must be > 0")
case c.Net.ReadTimeout <= 0:
return ConfigurationError("Net.ReadTimeout must be > 0")
case c.Net.WriteTimeout <= 0:
return ConfigurationError("Net.WriteTimeout must be > 0")
case c.Net.KeepAlive < 0:
return ConfigurationError("Net.KeepAlive must be >= 0")
case c.Net.SASL.Enable == true && c.Net.SASL.User == "":
return ConfigurationError("Net.SASL.User must not be empty when SASL is enabled")
case c.Net.SASL.Enable == true && c.Net.SASL.Password == "":
return ConfigurationError("Net.SASL.Password must not be empty when SASL is enabled")
}
// validate the Metadata values
switch {
case c.Metadata.Retry.Max < 0:
return ConfigurationError("Metadata.Retry.Max must be >= 0")
case c.Metadata.Retry.Backoff < 0:
return ConfigurationError("Metadata.Retry.Backoff must be >= 0")
case c.Metadata.RefreshFrequency < 0:
return ConfigurationError("Metadata.RefreshFrequency must be >= 0")
}
// validate the Producer values
switch {
case c.Producer.MaxMessageBytes <= 0:
return ConfigurationError("Producer.MaxMessageBytes must be > 0")
case c.Producer.RequiredAcks < -1:
return ConfigurationError("Producer.RequiredAcks must be >= -1")
case c.Producer.Timeout <= 0:
return ConfigurationError("Producer.Timeout must be > 0")
case c.Producer.Partitioner == nil:
return ConfigurationError("Producer.Partitioner must not be nil")
case c.Producer.Flush.Bytes < 0:
return ConfigurationError("Producer.Flush.Bytes must be >= 0")
case c.Producer.Flush.Messages < 0:
return ConfigurationError("Producer.Flush.Messages must be >= 0")
case c.Producer.Flush.Frequency < 0:
return ConfigurationError("Producer.Flush.Frequency must be >= 0")
case c.Producer.Flush.MaxMessages < 0:
return ConfigurationError("Producer.Flush.MaxMessages must be >= 0")
case c.Producer.Flush.MaxMessages > 0 && c.Producer.Flush.MaxMessages < c.Producer.Flush.Messages:
return ConfigurationError("Producer.Flush.MaxMessages must be >= Producer.Flush.Messages when set")
case c.Producer.Retry.Max < 0:
return ConfigurationError("Producer.Retry.Max must be >= 0")
case c.Producer.Retry.Backoff < 0:
return ConfigurationError("Producer.Retry.Backoff must be >= 0")
}
if c.Producer.Compression == CompressionLZ4 && !c.Version.IsAtLeast(V0_10_0_0) {
return ConfigurationError("lz4 compression requires Version >= V0_10_0_0")
}
// validate the Consumer values
switch {
case c.Consumer.Fetch.Min <= 0:
return ConfigurationError("Consumer.Fetch.Min must be > 0")
case c.Consumer.Fetch.Default <= 0:
return ConfigurationError("Consumer.Fetch.Default must be > 0")
case c.Consumer.Fetch.Max < 0:
return ConfigurationError("Consumer.Fetch.Max must be >= 0")
case c.Consumer.MaxWaitTime < 1*time.Millisecond:
return ConfigurationError("Consumer.MaxWaitTime must be >= 1ms")
case c.Consumer.MaxProcessingTime <= 0:
return ConfigurationError("Consumer.MaxProcessingTime must be > 0")
case c.Consumer.Retry.Backoff < 0:
return ConfigurationError("Consumer.Retry.Backoff must be >= 0")
case c.Consumer.Offsets.CommitInterval <= 0:
return ConfigurationError("Consumer.Offsets.CommitInterval must be > 0")
case c.Consumer.Offsets.Initial != OffsetOldest && c.Consumer.Offsets.Initial != OffsetNewest:
return ConfigurationError("Consumer.Offsets.Initial must be OffsetOldest or OffsetNewest")
}
// validate misc shared values
switch {
case c.ChannelBufferSize < 0:
return ConfigurationError("ChannelBufferSize must be >= 0")
case !validID.MatchString(c.ClientID):
return ConfigurationError("ClientID is invalid")
}
return nil
}

806
vendor/github.com/Shopify/sarama/consumer.go generated vendored Normal file
View File

@ -0,0 +1,806 @@
package sarama
import (
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
)
// ConsumerMessage encapsulates a Kafka message returned by the consumer.
type ConsumerMessage struct {
Key, Value []byte
Topic string
Partition int32
Offset int64
Timestamp time.Time // only set if kafka is version 0.10+, inner message timestamp
BlockTimestamp time.Time // only set if kafka is version 0.10+, outer (compressed) block timestamp
Headers []*RecordHeader // only set if kafka is version 0.11+
}
// ConsumerError is what is provided to the user when an error occurs.
// It wraps an error and includes the topic and partition.
type ConsumerError struct {
Topic string
Partition int32
Err error
}
func (ce ConsumerError) Error() string {
return fmt.Sprintf("kafka: error while consuming %s/%d: %s", ce.Topic, ce.Partition, ce.Err)
}
// ConsumerErrors is a type that wraps a batch of errors and implements the Error interface.
// It can be returned from the PartitionConsumer's Close methods to avoid the need to manually drain errors
// when stopping.
type ConsumerErrors []*ConsumerError
func (ce ConsumerErrors) Error() string {
return fmt.Sprintf("kafka: %d errors while consuming", len(ce))
}
// Consumer manages PartitionConsumers which process Kafka messages from brokers. You MUST call Close()
// on a consumer to avoid leaks, it will not be garbage-collected automatically when it passes out of
// scope.
//
// Sarama's Consumer type does not currently support automatic consumer-group rebalancing and offset tracking.
// For Zookeeper-based tracking (Kafka 0.8.2 and earlier), the https://github.com/wvanbergen/kafka library
// builds on Sarama to add this support. For Kafka-based tracking (Kafka 0.9 and later), the
// https://github.com/bsm/sarama-cluster library builds on Sarama to add this support.
type Consumer interface {
// Topics returns the set of available topics as retrieved from the cluster
// metadata. This method is the same as Client.Topics(), and is provided for
// convenience.
Topics() ([]string, error)
// Partitions returns the sorted list of all partition IDs for the given topic.
// This method is the same as Client.Partitions(), and is provided for convenience.
Partitions(topic string) ([]int32, error)
// ConsumePartition creates a PartitionConsumer on the given topic/partition with
// the given offset. It will return an error if this Consumer is already consuming
// on the given topic/partition. Offset can be a literal offset, or OffsetNewest
// or OffsetOldest
ConsumePartition(topic string, partition int32, offset int64) (PartitionConsumer, error)
// HighWaterMarks returns the current high water marks for each topic and partition.
// Consistency between partitions is not guaranteed since high water marks are updated separately.
HighWaterMarks() map[string]map[int32]int64
// Close shuts down the consumer. It must be called after all child
// PartitionConsumers have already been closed.
Close() error
}
type consumer struct {
client Client
conf *Config
ownClient bool
lock sync.Mutex
children map[string]map[int32]*partitionConsumer
brokerConsumers map[*Broker]*brokerConsumer
}
// NewConsumer creates a new consumer using the given broker addresses and configuration.
func NewConsumer(addrs []string, config *Config) (Consumer, error) {
client, err := NewClient(addrs, config)
if err != nil {
return nil, err
}
c, err := NewConsumerFromClient(client)
if err != nil {
return nil, err
}
c.(*consumer).ownClient = true
return c, nil
}
// NewConsumerFromClient creates a new consumer using the given client. It is still
// necessary to call Close() on the underlying client when shutting down this consumer.
func NewConsumerFromClient(client Client) (Consumer, error) {
// Check that we are not dealing with a closed Client before processing any other arguments
if client.Closed() {
return nil, ErrClosedClient
}
c := &consumer{
client: client,
conf: client.Config(),
children: make(map[string]map[int32]*partitionConsumer),
brokerConsumers: make(map[*Broker]*brokerConsumer),
}
return c, nil
}
func (c *consumer) Close() error {
if c.ownClient {
return c.client.Close()
}
return nil
}
func (c *consumer) Topics() ([]string, error) {
return c.client.Topics()
}
func (c *consumer) Partitions(topic string) ([]int32, error) {
return c.client.Partitions(topic)
}
func (c *consumer) ConsumePartition(topic string, partition int32, offset int64) (PartitionConsumer, error) {
child := &partitionConsumer{
consumer: c,
conf: c.conf,
topic: topic,
partition: partition,
messages: make(chan *ConsumerMessage, c.conf.ChannelBufferSize),
errors: make(chan *ConsumerError, c.conf.ChannelBufferSize),
feeder: make(chan *FetchResponse, 1),
trigger: make(chan none, 1),
dying: make(chan none),
fetchSize: c.conf.Consumer.Fetch.Default,
}
if err := child.chooseStartingOffset(offset); err != nil {
return nil, err
}
var leader *Broker
var err error
if leader, err = c.client.Leader(child.topic, child.partition); err != nil {
return nil, err
}
if err := c.addChild(child); err != nil {
return nil, err
}
go withRecover(child.dispatcher)
go withRecover(child.responseFeeder)
child.broker = c.refBrokerConsumer(leader)
child.broker.input <- child
return child, nil
}
func (c *consumer) HighWaterMarks() map[string]map[int32]int64 {
c.lock.Lock()
defer c.lock.Unlock()
hwms := make(map[string]map[int32]int64)
for topic, p := range c.children {
hwm := make(map[int32]int64, len(p))
for partition, pc := range p {
hwm[partition] = pc.HighWaterMarkOffset()
}
hwms[topic] = hwm
}
return hwms
}
func (c *consumer) addChild(child *partitionConsumer) error {
c.lock.Lock()
defer c.lock.Unlock()
topicChildren := c.children[child.topic]
if topicChildren == nil {
topicChildren = make(map[int32]*partitionConsumer)
c.children[child.topic] = topicChildren
}
if topicChildren[child.partition] != nil {
return ConfigurationError("That topic/partition is already being consumed")
}
topicChildren[child.partition] = child
return nil
}
func (c *consumer) removeChild(child *partitionConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
delete(c.children[child.topic], child.partition)
}
func (c *consumer) refBrokerConsumer(broker *Broker) *brokerConsumer {
c.lock.Lock()
defer c.lock.Unlock()
bc := c.brokerConsumers[broker]
if bc == nil {
bc = c.newBrokerConsumer(broker)
c.brokerConsumers[broker] = bc
}
bc.refs++
return bc
}
func (c *consumer) unrefBrokerConsumer(brokerWorker *brokerConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
brokerWorker.refs--
if brokerWorker.refs == 0 {
close(brokerWorker.input)
if c.brokerConsumers[brokerWorker.broker] == brokerWorker {
delete(c.brokerConsumers, brokerWorker.broker)
}
}
}
func (c *consumer) abandonBrokerConsumer(brokerWorker *brokerConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
delete(c.brokerConsumers, brokerWorker.broker)
}
// PartitionConsumer
// PartitionConsumer processes Kafka messages from a given topic and partition. You MUST call one of Close() or
// AsyncClose() on a PartitionConsumer to avoid leaks; it will not be garbage-collected automatically when it passes out
// of scope.
//
// The simplest way of using a PartitionConsumer is to loop over its Messages channel using a for/range
// loop. The PartitionConsumer will only stop itself in one case: when the offset being consumed is reported
// as out of range by the brokers. In this case you should decide what you want to do (try a different offset,
// notify a human, etc) and handle it appropriately. For all other error cases, it will just keep retrying.
// By default, it logs these errors to sarama.Logger; if you want to be notified directly of all errors, set
// your config's Consumer.Return.Errors to true and read from the Errors channel, using a select statement
// or a separate goroutine. Check out the Consumer examples to see implementations of these different approaches.
//
// To terminate such a for/range loop while the loop is executing, call AsyncClose. This will kick off the process of
// consumer tear-down & return imediately. Continue to loop, servicing the Messages channel until the teardown process
// AsyncClose initiated closes it (thus terminating the for/range loop). If you've already ceased reading Messages, call
// Close; this will signal the PartitionConsumer's goroutines to begin shutting down (just like AsyncClose), but will
// also drain the Messages channel, harvest all errors & return them once cleanup has completed.
type PartitionConsumer interface {
// AsyncClose initiates a shutdown of the PartitionConsumer. This method will return immediately, after which you
// should continue to service the 'Messages' and 'Errors' channels until they are empty. It is required to call this
// function, or Close before a consumer object passes out of scope, as it will otherwise leak memory. You must call
// this before calling Close on the underlying client.
AsyncClose()
// Close stops the PartitionConsumer from fetching messages. It will initiate a shutdown just like AsyncClose, drain
// the Messages channel, harvest any errors & return them to the caller. Note that if you are continuing to service
// the Messages channel when this function is called, you will be competing with Close for messages; consider
// calling AsyncClose, instead. It is required to call this function (or AsyncClose) before a consumer object passes
// out of scope, as it will otherwise leak memory. You must call this before calling Close on the underlying client.
Close() error
// Messages returns the read channel for the messages that are returned by
// the broker.
Messages() <-chan *ConsumerMessage
// Errors returns a read channel of errors that occurred during consuming, if
// enabled. By default, errors are logged and not returned over this channel.
// If you want to implement any custom error handling, set your config's
// Consumer.Return.Errors setting to true, and read from this channel.
Errors() <-chan *ConsumerError
// HighWaterMarkOffset returns the high water mark offset of the partition,
// i.e. the offset that will be used for the next message that will be produced.
// You can use this to determine how far behind the processing is.
HighWaterMarkOffset() int64
}
type partitionConsumer struct {
highWaterMarkOffset int64 // must be at the top of the struct because https://golang.org/pkg/sync/atomic/#pkg-note-BUG
consumer *consumer
conf *Config
topic string
partition int32
broker *brokerConsumer
messages chan *ConsumerMessage
errors chan *ConsumerError
feeder chan *FetchResponse
trigger, dying chan none
responseResult error
fetchSize int32
offset int64
}
var errTimedOut = errors.New("timed out feeding messages to the user") // not user-facing
func (child *partitionConsumer) sendError(err error) {
cErr := &ConsumerError{
Topic: child.topic,
Partition: child.partition,
Err: err,
}
if child.conf.Consumer.Return.Errors {
child.errors <- cErr
} else {
Logger.Println(cErr)
}
}
func (child *partitionConsumer) dispatcher() {
for range child.trigger {
select {
case <-child.dying:
close(child.trigger)
case <-time.After(child.conf.Consumer.Retry.Backoff):
if child.broker != nil {
child.consumer.unrefBrokerConsumer(child.broker)
child.broker = nil
}
Logger.Printf("consumer/%s/%d finding new broker\n", child.topic, child.partition)
if err := child.dispatch(); err != nil {
child.sendError(err)
child.trigger <- none{}
}
}
}
if child.broker != nil {
child.consumer.unrefBrokerConsumer(child.broker)
}
child.consumer.removeChild(child)
close(child.feeder)
}
func (child *partitionConsumer) dispatch() error {
if err := child.consumer.client.RefreshMetadata(child.topic); err != nil {
return err
}
var leader *Broker
var err error
if leader, err = child.consumer.client.Leader(child.topic, child.partition); err != nil {
return err
}
child.broker = child.consumer.refBrokerConsumer(leader)
child.broker.input <- child
return nil
}
func (child *partitionConsumer) chooseStartingOffset(offset int64) error {
newestOffset, err := child.consumer.client.GetOffset(child.topic, child.partition, OffsetNewest)
if err != nil {
return err
}
oldestOffset, err := child.consumer.client.GetOffset(child.topic, child.partition, OffsetOldest)
if err != nil {
return err
}
switch {
case offset == OffsetNewest:
child.offset = newestOffset
case offset == OffsetOldest:
child.offset = oldestOffset
case offset >= oldestOffset && offset <= newestOffset:
child.offset = offset
default:
return ErrOffsetOutOfRange
}
return nil
}
func (child *partitionConsumer) Messages() <-chan *ConsumerMessage {
return child.messages
}
func (child *partitionConsumer) Errors() <-chan *ConsumerError {
return child.errors
}
func (child *partitionConsumer) AsyncClose() {
// this triggers whatever broker owns this child to abandon it and close its trigger channel, which causes
// the dispatcher to exit its loop, which removes it from the consumer then closes its 'messages' and
// 'errors' channel (alternatively, if the child is already at the dispatcher for some reason, that will
// also just close itself)
close(child.dying)
}
func (child *partitionConsumer) Close() error {
child.AsyncClose()
go withRecover(func() {
for range child.messages {
// drain
}
})
var errors ConsumerErrors
for err := range child.errors {
errors = append(errors, err)
}
if len(errors) > 0 {
return errors
}
return nil
}
func (child *partitionConsumer) HighWaterMarkOffset() int64 {
return atomic.LoadInt64(&child.highWaterMarkOffset)
}
func (child *partitionConsumer) responseFeeder() {
var msgs []*ConsumerMessage
msgSent := false
feederLoop:
for response := range child.feeder {
msgs, child.responseResult = child.parseResponse(response)
expiryTicker := time.NewTicker(child.conf.Consumer.MaxProcessingTime)
for i, msg := range msgs {
messageSelect:
select {
case child.messages <- msg:
msgSent = true
case <-expiryTicker.C:
if !msgSent {
child.responseResult = errTimedOut
child.broker.acks.Done()
for _, msg = range msgs[i:] {
child.messages <- msg
}
child.broker.input <- child
continue feederLoop
} else {
// current message has not been sent, return to select
// statement
msgSent = false
goto messageSelect
}
}
}
expiryTicker.Stop()
child.broker.acks.Done()
}
close(child.messages)
close(child.errors)
}
func (child *partitionConsumer) parseMessages(msgSet *MessageSet) ([]*ConsumerMessage, error) {
var messages []*ConsumerMessage
var incomplete bool
prelude := true
for _, msgBlock := range msgSet.Messages {
for _, msg := range msgBlock.Messages() {
offset := msg.Offset
if msg.Msg.Version >= 1 {
baseOffset := msgBlock.Offset - msgBlock.Messages()[len(msgBlock.Messages())-1].Offset
offset += baseOffset
}
if prelude && offset < child.offset {
continue
}
prelude = false
if offset >= child.offset {
messages = append(messages, &ConsumerMessage{
Topic: child.topic,
Partition: child.partition,
Key: msg.Msg.Key,
Value: msg.Msg.Value,
Offset: offset,
Timestamp: msg.Msg.Timestamp,
BlockTimestamp: msgBlock.Msg.Timestamp,
})
child.offset = offset + 1
} else {
incomplete = true
}
}
}
if incomplete || len(messages) == 0 {
return nil, ErrIncompleteResponse
}
return messages, nil
}
func (child *partitionConsumer) parseRecords(batch *RecordBatch) ([]*ConsumerMessage, error) {
var messages []*ConsumerMessage
var incomplete bool
prelude := true
for _, rec := range batch.Records {
offset := batch.FirstOffset + rec.OffsetDelta
if prelude && offset < child.offset {
continue
}
prelude = false
if offset >= child.offset {
messages = append(messages, &ConsumerMessage{
Topic: child.topic,
Partition: child.partition,
Key: rec.Key,
Value: rec.Value,
Offset: offset,
Timestamp: batch.FirstTimestamp.Add(rec.TimestampDelta),
Headers: rec.Headers,
})
child.offset = offset + 1
} else {
incomplete = true
}
}
if incomplete || len(messages) == 0 {
return nil, ErrIncompleteResponse
}
return messages, nil
}
func (child *partitionConsumer) parseResponse(response *FetchResponse) ([]*ConsumerMessage, error) {
block := response.GetBlock(child.topic, child.partition)
if block == nil {
return nil, ErrIncompleteResponse
}
if block.Err != ErrNoError {
return nil, block.Err
}
nRecs, err := block.Records.numRecords()
if err != nil {
return nil, err
}
if nRecs == 0 {
partialTrailingMessage, err := block.Records.isPartial()
if err != nil {
return nil, err
}
// We got no messages. If we got a trailing one then we need to ask for more data.
// Otherwise we just poll again and wait for one to be produced...
if partialTrailingMessage {
if child.conf.Consumer.Fetch.Max > 0 && child.fetchSize == child.conf.Consumer.Fetch.Max {
// we can't ask for more data, we've hit the configured limit
child.sendError(ErrMessageTooLarge)
child.offset++ // skip this one so we can keep processing future messages
} else {
child.fetchSize *= 2
if child.conf.Consumer.Fetch.Max > 0 && child.fetchSize > child.conf.Consumer.Fetch.Max {
child.fetchSize = child.conf.Consumer.Fetch.Max
}
}
}
return nil, nil
}
// we got messages, reset our fetch size in case it was increased for a previous request
child.fetchSize = child.conf.Consumer.Fetch.Default
atomic.StoreInt64(&child.highWaterMarkOffset, block.HighWaterMarkOffset)
if control, err := block.Records.isControl(); err != nil || control {
return nil, err
}
if block.Records.recordsType == legacyRecords {
return child.parseMessages(block.Records.msgSet)
}
return child.parseRecords(block.Records.recordBatch)
}
// brokerConsumer
type brokerConsumer struct {
consumer *consumer
broker *Broker
input chan *partitionConsumer
newSubscriptions chan []*partitionConsumer
wait chan none
subscriptions map[*partitionConsumer]none
acks sync.WaitGroup
refs int
}
func (c *consumer) newBrokerConsumer(broker *Broker) *brokerConsumer {
bc := &brokerConsumer{
consumer: c,
broker: broker,
input: make(chan *partitionConsumer),
newSubscriptions: make(chan []*partitionConsumer),
wait: make(chan none),
subscriptions: make(map[*partitionConsumer]none),
refs: 0,
}
go withRecover(bc.subscriptionManager)
go withRecover(bc.subscriptionConsumer)
return bc
}
func (bc *brokerConsumer) subscriptionManager() {
var buffer []*partitionConsumer
// The subscriptionManager constantly accepts new subscriptions on `input` (even when the main subscriptionConsumer
// goroutine is in the middle of a network request) and batches it up. The main worker goroutine picks
// up a batch of new subscriptions between every network request by reading from `newSubscriptions`, so we give
// it nil if no new subscriptions are available. We also write to `wait` only when new subscriptions is available,
// so the main goroutine can block waiting for work if it has none.
for {
if len(buffer) > 0 {
select {
case event, ok := <-bc.input:
if !ok {
goto done
}
buffer = append(buffer, event)
case bc.newSubscriptions <- buffer:
buffer = nil
case bc.wait <- none{}:
}
} else {
select {
case event, ok := <-bc.input:
if !ok {
goto done
}
buffer = append(buffer, event)
case bc.newSubscriptions <- nil:
}
}
}
done:
close(bc.wait)
if len(buffer) > 0 {
bc.newSubscriptions <- buffer
}
close(bc.newSubscriptions)
}
func (bc *brokerConsumer) subscriptionConsumer() {
<-bc.wait // wait for our first piece of work
// the subscriptionConsumer ensures we will get nil right away if no new subscriptions is available
for newSubscriptions := range bc.newSubscriptions {
bc.updateSubscriptions(newSubscriptions)
if len(bc.subscriptions) == 0 {
// We're about to be shut down or we're about to receive more subscriptions.
// Either way, the signal just hasn't propagated to our goroutine yet.
<-bc.wait
continue
}
response, err := bc.fetchNewMessages()
if err != nil {
Logger.Printf("consumer/broker/%d disconnecting due to error processing FetchRequest: %s\n", bc.broker.ID(), err)
bc.abort(err)
return
}
bc.acks.Add(len(bc.subscriptions))
for child := range bc.subscriptions {
child.feeder <- response
}
bc.acks.Wait()
bc.handleResponses()
}
}
func (bc *brokerConsumer) updateSubscriptions(newSubscriptions []*partitionConsumer) {
for _, child := range newSubscriptions {
bc.subscriptions[child] = none{}
Logger.Printf("consumer/broker/%d added subscription to %s/%d\n", bc.broker.ID(), child.topic, child.partition)
}
for child := range bc.subscriptions {
select {
case <-child.dying:
Logger.Printf("consumer/broker/%d closed dead subscription to %s/%d\n", bc.broker.ID(), child.topic, child.partition)
close(child.trigger)
delete(bc.subscriptions, child)
default:
break
}
}
}
func (bc *brokerConsumer) handleResponses() {
// handles the response codes left for us by our subscriptions, and abandons ones that have been closed
for child := range bc.subscriptions {
result := child.responseResult
child.responseResult = nil
switch result {
case nil:
break
case errTimedOut:
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because consuming was taking too long\n",
bc.broker.ID(), child.topic, child.partition)
delete(bc.subscriptions, child)
case ErrOffsetOutOfRange:
// there's no point in retrying this it will just fail the same way again
// shut it down and force the user to choose what to do
child.sendError(result)
Logger.Printf("consumer/%s/%d shutting down because %s\n", child.topic, child.partition, result)
close(child.trigger)
delete(bc.subscriptions, child)
case ErrUnknownTopicOrPartition, ErrNotLeaderForPartition, ErrLeaderNotAvailable, ErrReplicaNotAvailable:
// not an error, but does need redispatching
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because %s\n",
bc.broker.ID(), child.topic, child.partition, result)
child.trigger <- none{}
delete(bc.subscriptions, child)
default:
// dunno, tell the user and try redispatching
child.sendError(result)
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because %s\n",
bc.broker.ID(), child.topic, child.partition, result)
child.trigger <- none{}
delete(bc.subscriptions, child)
}
}
}
func (bc *brokerConsumer) abort(err error) {
bc.consumer.abandonBrokerConsumer(bc)
_ = bc.broker.Close() // we don't care about the error this might return, we already have one
for child := range bc.subscriptions {
child.sendError(err)
child.trigger <- none{}
}
for newSubscriptions := range bc.newSubscriptions {
if len(newSubscriptions) == 0 {
<-bc.wait
continue
}
for _, child := range newSubscriptions {
child.sendError(err)
child.trigger <- none{}
}
}
}
func (bc *brokerConsumer) fetchNewMessages() (*FetchResponse, error) {
request := &FetchRequest{
MinBytes: bc.consumer.conf.Consumer.Fetch.Min,
MaxWaitTime: int32(bc.consumer.conf.Consumer.MaxWaitTime / time.Millisecond),
}
if bc.consumer.conf.Version.IsAtLeast(V0_10_0_0) {
request.Version = 2
}
if bc.consumer.conf.Version.IsAtLeast(V0_10_1_0) {
request.Version = 3
request.MaxBytes = MaxResponseSize
}
if bc.consumer.conf.Version.IsAtLeast(V0_11_0_0) {
request.Version = 4
request.Isolation = ReadUncommitted // We don't support yet transactions.
}
for child := range bc.subscriptions {
request.AddBlock(child.topic, child.partition, child.offset, child.fetchSize)
}
return bc.broker.Fetch(request)
}

View File

@ -0,0 +1,94 @@
package sarama
type ConsumerGroupMemberMetadata struct {
Version int16
Topics []string
UserData []byte
}
func (m *ConsumerGroupMemberMetadata) encode(pe packetEncoder) error {
pe.putInt16(m.Version)
if err := pe.putStringArray(m.Topics); err != nil {
return err
}
if err := pe.putBytes(m.UserData); err != nil {
return err
}
return nil
}
func (m *ConsumerGroupMemberMetadata) decode(pd packetDecoder) (err error) {
if m.Version, err = pd.getInt16(); err != nil {
return
}
if m.Topics, err = pd.getStringArray(); err != nil {
return
}
if m.UserData, err = pd.getBytes(); err != nil {
return
}
return nil
}
type ConsumerGroupMemberAssignment struct {
Version int16
Topics map[string][]int32
UserData []byte
}
func (m *ConsumerGroupMemberAssignment) encode(pe packetEncoder) error {
pe.putInt16(m.Version)
if err := pe.putArrayLength(len(m.Topics)); err != nil {
return err
}
for topic, partitions := range m.Topics {
if err := pe.putString(topic); err != nil {
return err
}
if err := pe.putInt32Array(partitions); err != nil {
return err
}
}
if err := pe.putBytes(m.UserData); err != nil {
return err
}
return nil
}
func (m *ConsumerGroupMemberAssignment) decode(pd packetDecoder) (err error) {
if m.Version, err = pd.getInt16(); err != nil {
return
}
var topicLen int
if topicLen, err = pd.getArrayLength(); err != nil {
return
}
m.Topics = make(map[string][]int32, topicLen)
for i := 0; i < topicLen; i++ {
var topic string
if topic, err = pd.getString(); err != nil {
return
}
if m.Topics[topic], err = pd.getInt32Array(); err != nil {
return
}
}
if m.UserData, err = pd.getBytes(); err != nil {
return
}
return nil
}

View File

@ -0,0 +1,26 @@
package sarama
type ConsumerMetadataRequest struct {
ConsumerGroup string
}
func (r *ConsumerMetadataRequest) encode(pe packetEncoder) error {
return pe.putString(r.ConsumerGroup)
}
func (r *ConsumerMetadataRequest) decode(pd packetDecoder, version int16) (err error) {
r.ConsumerGroup, err = pd.getString()
return err
}
func (r *ConsumerMetadataRequest) key() int16 {
return 10
}
func (r *ConsumerMetadataRequest) version() int16 {
return 0
}
func (r *ConsumerMetadataRequest) requiredVersion() KafkaVersion {
return V0_8_2_0
}

View File

@ -0,0 +1,85 @@
package sarama
import (
"net"
"strconv"
)
type ConsumerMetadataResponse struct {
Err KError
Coordinator *Broker
CoordinatorID int32 // deprecated: use Coordinator.ID()
CoordinatorHost string // deprecated: use Coordinator.Addr()
CoordinatorPort int32 // deprecated: use Coordinator.Addr()
}
func (r *ConsumerMetadataResponse) decode(pd packetDecoder, version int16) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(tmp)
coordinator := new(Broker)
if err := coordinator.decode(pd); err != nil {
return err
}
if coordinator.addr == ":0" {
return nil
}
r.Coordinator = coordinator
// this can all go away in 2.0, but we have to fill in deprecated fields to maintain
// backwards compatibility
host, portstr, err := net.SplitHostPort(r.Coordinator.Addr())
if err != nil {
return err
}
port, err := strconv.ParseInt(portstr, 10, 32)
if err != nil {
return err
}
r.CoordinatorID = r.Coordinator.ID()
r.CoordinatorHost = host
r.CoordinatorPort = int32(port)
return nil
}
func (r *ConsumerMetadataResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
if r.Coordinator != nil {
host, portstr, err := net.SplitHostPort(r.Coordinator.Addr())
if err != nil {
return err
}
port, err := strconv.ParseInt(portstr, 10, 32)
if err != nil {
return err
}
pe.putInt32(r.Coordinator.ID())
if err := pe.putString(host); err != nil {
return err
}
pe.putInt32(int32(port))
return nil
}
pe.putInt32(r.CoordinatorID)
if err := pe.putString(r.CoordinatorHost); err != nil {
return err
}
pe.putInt32(r.CoordinatorPort)
return nil
}
func (r *ConsumerMetadataResponse) key() int16 {
return 10
}
func (r *ConsumerMetadataResponse) version() int16 {
return 0
}
func (r *ConsumerMetadataResponse) requiredVersion() KafkaVersion {
return V0_8_2_0
}

69
vendor/github.com/Shopify/sarama/crc32_field.go generated vendored Normal file
View File

@ -0,0 +1,69 @@
package sarama
import (
"encoding/binary"
"fmt"
"hash/crc32"
)
type crcPolynomial int8
const (
crcIEEE crcPolynomial = iota
crcCastagnoli
)
var castagnoliTable = crc32.MakeTable(crc32.Castagnoli)
// crc32Field implements the pushEncoder and pushDecoder interfaces for calculating CRC32s.
type crc32Field struct {
startOffset int
polynomial crcPolynomial
}
func (c *crc32Field) saveOffset(in int) {
c.startOffset = in
}
func (c *crc32Field) reserveLength() int {
return 4
}
func newCRC32Field(polynomial crcPolynomial) *crc32Field {
return &crc32Field{polynomial: polynomial}
}
func (c *crc32Field) run(curOffset int, buf []byte) error {
crc, err := c.crc(curOffset, buf)
if err != nil {
return err
}
binary.BigEndian.PutUint32(buf[c.startOffset:], crc)
return nil
}
func (c *crc32Field) check(curOffset int, buf []byte) error {
crc, err := c.crc(curOffset, buf)
if err != nil {
return err
}
expected := binary.BigEndian.Uint32(buf[c.startOffset:])
if crc != expected {
return PacketDecodingError{fmt.Sprintf("CRC didn't match expected %#x got %#x", expected, crc)}
}
return nil
}
func (c *crc32Field) crc(curOffset int, buf []byte) (uint32, error) {
var tab *crc32.Table
switch c.polynomial {
case crcIEEE:
tab = crc32.IEEETable
case crcCastagnoli:
tab = castagnoliTable
default:
return 0, PacketDecodingError{"invalid CRC type"}
}
return crc32.Checksum(buf[c.startOffset+4:curOffset], tab), nil
}

View File

@ -0,0 +1,30 @@
package sarama
type DescribeGroupsRequest struct {
Groups []string
}
func (r *DescribeGroupsRequest) encode(pe packetEncoder) error {
return pe.putStringArray(r.Groups)
}
func (r *DescribeGroupsRequest) decode(pd packetDecoder, version int16) (err error) {
r.Groups, err = pd.getStringArray()
return
}
func (r *DescribeGroupsRequest) key() int16 {
return 15
}
func (r *DescribeGroupsRequest) version() int16 {
return 0
}
func (r *DescribeGroupsRequest) requiredVersion() KafkaVersion {
return V0_9_0_0
}
func (r *DescribeGroupsRequest) AddGroup(group string) {
r.Groups = append(r.Groups, group)
}

View File

@ -0,0 +1,187 @@
package sarama
type DescribeGroupsResponse struct {
Groups []*GroupDescription
}
func (r *DescribeGroupsResponse) encode(pe packetEncoder) error {
if err := pe.putArrayLength(len(r.Groups)); err != nil {
return err
}
for _, groupDescription := range r.Groups {
if err := groupDescription.encode(pe); err != nil {
return err
}
}
return nil
}
func (r *DescribeGroupsResponse) decode(pd packetDecoder, version int16) (err error) {
n, err := pd.getArrayLength()
if err != nil {
return err
}
r.Groups = make([]*GroupDescription, n)
for i := 0; i < n; i++ {
r.Groups[i] = new(GroupDescription)
if err := r.Groups[i].decode(pd); err != nil {
return err
}
}
return nil
}
func (r *DescribeGroupsResponse) key() int16 {
return 15
}
func (r *DescribeGroupsResponse) version() int16 {
return 0
}
func (r *DescribeGroupsResponse) requiredVersion() KafkaVersion {
return V0_9_0_0
}
type GroupDescription struct {
Err KError
GroupId string
State string
ProtocolType string
Protocol string
Members map[string]*GroupMemberDescription
}
func (gd *GroupDescription) encode(pe packetEncoder) error {
pe.putInt16(int16(gd.Err))
if err := pe.putString(gd.GroupId); err != nil {
return err
}
if err := pe.putString(gd.State); err != nil {
return err
}
if err := pe.putString(gd.ProtocolType); err != nil {
return err
}
if err := pe.putString(gd.Protocol); err != nil {
return err
}
if err := pe.putArrayLength(len(gd.Members)); err != nil {
return err
}
for memberId, groupMemberDescription := range gd.Members {
if err := pe.putString(memberId); err != nil {
return err
}
if err := groupMemberDescription.encode(pe); err != nil {
return err
}
}
return nil
}
func (gd *GroupDescription) decode(pd packetDecoder) (err error) {
kerr, err := pd.getInt16()
if err != nil {
return err
}
gd.Err = KError(kerr)
if gd.GroupId, err = pd.getString(); err != nil {
return
}
if gd.State, err = pd.getString(); err != nil {
return
}
if gd.ProtocolType, err = pd.getString(); err != nil {
return
}
if gd.Protocol, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
gd.Members = make(map[string]*GroupMemberDescription)
for i := 0; i < n; i++ {
memberId, err := pd.getString()
if err != nil {
return err
}
gd.Members[memberId] = new(GroupMemberDescription)
if err := gd.Members[memberId].decode(pd); err != nil {
return err
}
}
return nil
}
type GroupMemberDescription struct {
ClientId string
ClientHost string
MemberMetadata []byte
MemberAssignment []byte
}
func (gmd *GroupMemberDescription) encode(pe packetEncoder) error {
if err := pe.putString(gmd.ClientId); err != nil {
return err
}
if err := pe.putString(gmd.ClientHost); err != nil {
return err
}
if err := pe.putBytes(gmd.MemberMetadata); err != nil {
return err
}
if err := pe.putBytes(gmd.MemberAssignment); err != nil {
return err
}
return nil
}
func (gmd *GroupMemberDescription) decode(pd packetDecoder) (err error) {
if gmd.ClientId, err = pd.getString(); err != nil {
return
}
if gmd.ClientHost, err = pd.getString(); err != nil {
return
}
if gmd.MemberMetadata, err = pd.getBytes(); err != nil {
return
}
if gmd.MemberAssignment, err = pd.getBytes(); err != nil {
return
}
return nil
}
func (gmd *GroupMemberDescription) GetMemberAssignment() (*ConsumerGroupMemberAssignment, error) {
assignment := new(ConsumerGroupMemberAssignment)
err := decode(gmd.MemberAssignment, assignment)
return assignment, err
}
func (gmd *GroupMemberDescription) GetMemberMetadata() (*ConsumerGroupMemberMetadata, error) {
metadata := new(ConsumerGroupMemberMetadata)
err := decode(gmd.MemberMetadata, metadata)
return metadata, err
}

10
vendor/github.com/Shopify/sarama/dev.yml generated vendored Normal file
View File

@ -0,0 +1,10 @@
name: sarama
up:
- go:
version: '1.9'
commands:
test:
run: make test
desc: 'run unit tests'

89
vendor/github.com/Shopify/sarama/encoder_decoder.go generated vendored Normal file
View File

@ -0,0 +1,89 @@
package sarama
import (
"fmt"
"github.com/rcrowley/go-metrics"
)
// Encoder is the interface that wraps the basic Encode method.
// Anything implementing Encoder can be turned into bytes using Kafka's encoding rules.
type encoder interface {
encode(pe packetEncoder) error
}
// Encode takes an Encoder and turns it into bytes while potentially recording metrics.
func encode(e encoder, metricRegistry metrics.Registry) ([]byte, error) {
if e == nil {
return nil, nil
}
var prepEnc prepEncoder
var realEnc realEncoder
err := e.encode(&prepEnc)
if err != nil {
return nil, err
}
if prepEnc.length < 0 || prepEnc.length > int(MaxRequestSize) {
return nil, PacketEncodingError{fmt.Sprintf("invalid request size (%d)", prepEnc.length)}
}
realEnc.raw = make([]byte, prepEnc.length)
realEnc.registry = metricRegistry
err = e.encode(&realEnc)
if err != nil {
return nil, err
}
return realEnc.raw, nil
}
// Decoder is the interface that wraps the basic Decode method.
// Anything implementing Decoder can be extracted from bytes using Kafka's encoding rules.
type decoder interface {
decode(pd packetDecoder) error
}
type versionedDecoder interface {
decode(pd packetDecoder, version int16) error
}
// Decode takes bytes and a Decoder and fills the fields of the decoder from the bytes,
// interpreted using Kafka's encoding rules.
func decode(buf []byte, in decoder) error {
if buf == nil {
return nil
}
helper := realDecoder{raw: buf}
err := in.decode(&helper)
if err != nil {
return err
}
if helper.off != len(buf) {
return PacketDecodingError{"invalid length"}
}
return nil
}
func versionedDecode(buf []byte, in versionedDecoder, version int16) error {
if buf == nil {
return nil
}
helper := realDecoder{raw: buf}
err := in.decode(&helper, version)
if err != nil {
return err
}
if helper.off != len(buf) {
return PacketDecodingError{"invalid length"}
}
return nil
}

269
vendor/github.com/Shopify/sarama/errors.go generated vendored Normal file
View File

@ -0,0 +1,269 @@
package sarama
import (
"errors"
"fmt"
)
// ErrOutOfBrokers is the error returned when the client has run out of brokers to talk to because all of them errored
// or otherwise failed to respond.
var ErrOutOfBrokers = errors.New("kafka: client has run out of available brokers to talk to (Is your cluster reachable?)")
// ErrClosedClient is the error returned when a method is called on a client that has been closed.
var ErrClosedClient = errors.New("kafka: tried to use a client that was closed")
// ErrIncompleteResponse is the error returned when the server returns a syntactically valid response, but it does
// not contain the expected information.
var ErrIncompleteResponse = errors.New("kafka: response did not contain all the expected topic/partition blocks")
// ErrInvalidPartition is the error returned when a partitioner returns an invalid partition index
// (meaning one outside of the range [0...numPartitions-1]).
var ErrInvalidPartition = errors.New("kafka: partitioner returned an invalid partition index")
// ErrAlreadyConnected is the error returned when calling Open() on a Broker that is already connected or connecting.
var ErrAlreadyConnected = errors.New("kafka: broker connection already initiated")
// ErrNotConnected is the error returned when trying to send or call Close() on a Broker that is not connected.
var ErrNotConnected = errors.New("kafka: broker not connected")
// ErrInsufficientData is returned when decoding and the packet is truncated. This can be expected
// when requesting messages, since as an optimization the server is allowed to return a partial message at the end
// of the message set.
var ErrInsufficientData = errors.New("kafka: insufficient data to decode packet, more bytes expected")
// ErrShuttingDown is returned when a producer receives a message during shutdown.
var ErrShuttingDown = errors.New("kafka: message received by producer in process of shutting down")
// ErrMessageTooLarge is returned when the next message to consume is larger than the configured Consumer.Fetch.Max
var ErrMessageTooLarge = errors.New("kafka: message is larger than Consumer.Fetch.Max")
// PacketEncodingError is returned from a failure while encoding a Kafka packet. This can happen, for example,
// if you try to encode a string over 2^15 characters in length, since Kafka's encoding rules do not permit that.
type PacketEncodingError struct {
Info string
}
func (err PacketEncodingError) Error() string {
return fmt.Sprintf("kafka: error encoding packet: %s", err.Info)
}
// PacketDecodingError is returned when there was an error (other than truncated data) decoding the Kafka broker's response.
// This can be a bad CRC or length field, or any other invalid value.
type PacketDecodingError struct {
Info string
}
func (err PacketDecodingError) Error() string {
return fmt.Sprintf("kafka: error decoding packet: %s", err.Info)
}
// ConfigurationError is the type of error returned from a constructor (e.g. NewClient, or NewConsumer)
// when the specified configuration is invalid.
type ConfigurationError string
func (err ConfigurationError) Error() string {
return "kafka: invalid configuration (" + string(err) + ")"
}
// KError is the type of error that can be returned directly by the Kafka broker.
// See https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-ErrorCodes
type KError int16
// Numeric error codes returned by the Kafka server.
const (
ErrNoError KError = 0
ErrUnknown KError = -1
ErrOffsetOutOfRange KError = 1
ErrInvalidMessage KError = 2
ErrUnknownTopicOrPartition KError = 3
ErrInvalidMessageSize KError = 4
ErrLeaderNotAvailable KError = 5
ErrNotLeaderForPartition KError = 6
ErrRequestTimedOut KError = 7
ErrBrokerNotAvailable KError = 8
ErrReplicaNotAvailable KError = 9
ErrMessageSizeTooLarge KError = 10
ErrStaleControllerEpochCode KError = 11
ErrOffsetMetadataTooLarge KError = 12
ErrNetworkException KError = 13
ErrOffsetsLoadInProgress KError = 14
ErrConsumerCoordinatorNotAvailable KError = 15
ErrNotCoordinatorForConsumer KError = 16
ErrInvalidTopic KError = 17
ErrMessageSetSizeTooLarge KError = 18
ErrNotEnoughReplicas KError = 19
ErrNotEnoughReplicasAfterAppend KError = 20
ErrInvalidRequiredAcks KError = 21
ErrIllegalGeneration KError = 22
ErrInconsistentGroupProtocol KError = 23
ErrInvalidGroupId KError = 24
ErrUnknownMemberId KError = 25
ErrInvalidSessionTimeout KError = 26
ErrRebalanceInProgress KError = 27
ErrInvalidCommitOffsetSize KError = 28
ErrTopicAuthorizationFailed KError = 29
ErrGroupAuthorizationFailed KError = 30
ErrClusterAuthorizationFailed KError = 31
ErrInvalidTimestamp KError = 32
ErrUnsupportedSASLMechanism KError = 33
ErrIllegalSASLState KError = 34
ErrUnsupportedVersion KError = 35
ErrTopicAlreadyExists KError = 36
ErrInvalidPartitions KError = 37
ErrInvalidReplicationFactor KError = 38
ErrInvalidReplicaAssignment KError = 39
ErrInvalidConfig KError = 40
ErrNotController KError = 41
ErrInvalidRequest KError = 42
ErrUnsupportedForMessageFormat KError = 43
ErrPolicyViolation KError = 44
ErrOutOfOrderSequenceNumber KError = 45
ErrDuplicateSequenceNumber KError = 46
ErrInvalidProducerEpoch KError = 47
ErrInvalidTxnState KError = 48
ErrInvalidProducerIDMapping KError = 49
ErrInvalidTransactionTimeout KError = 50
ErrConcurrentTransactions KError = 51
ErrTransactionCoordinatorFenced KError = 52
ErrTransactionalIDAuthorizationFailed KError = 53
ErrSecurityDisabled KError = 54
ErrOperationNotAttempted KError = 55
ErrKafkaStorageError KError = 56
ErrLogDirNotFound KError = 57
ErrSASLAuthenticationFailed KError = 58
ErrUnknownProducerID KError = 59
ErrReassignmentInProgress KError = 60
)
func (err KError) Error() string {
// Error messages stolen/adapted from
// https://kafka.apache.org/protocol#protocol_error_codes
switch err {
case ErrNoError:
return "kafka server: Not an error, why are you printing me?"
case ErrUnknown:
return "kafka server: Unexpected (unknown?) server error."
case ErrOffsetOutOfRange:
return "kafka server: The requested offset is outside the range of offsets maintained by the server for the given topic/partition."
case ErrInvalidMessage:
return "kafka server: Message contents does not match its CRC."
case ErrUnknownTopicOrPartition:
return "kafka server: Request was for a topic or partition that does not exist on this broker."
case ErrInvalidMessageSize:
return "kafka server: The message has a negative size."
case ErrLeaderNotAvailable:
return "kafka server: In the middle of a leadership election, there is currently no leader for this partition and hence it is unavailable for writes."
case ErrNotLeaderForPartition:
return "kafka server: Tried to send a message to a replica that is not the leader for some partition. Your metadata is out of date."
case ErrRequestTimedOut:
return "kafka server: Request exceeded the user-specified time limit in the request."
case ErrBrokerNotAvailable:
return "kafka server: Broker not available. Not a client facing error, we should never receive this!!!"
case ErrReplicaNotAvailable:
return "kafka server: Replica information not available, one or more brokers are down."
case ErrMessageSizeTooLarge:
return "kafka server: Message was too large, server rejected it to avoid allocation error."
case ErrStaleControllerEpochCode:
return "kafka server: StaleControllerEpochCode (internal error code for broker-to-broker communication)."
case ErrOffsetMetadataTooLarge:
return "kafka server: Specified a string larger than the configured maximum for offset metadata."
case ErrNetworkException:
return "kafka server: The server disconnected before a response was received."
case ErrOffsetsLoadInProgress:
return "kafka server: The broker is still loading offsets after a leader change for that offset's topic partition."
case ErrConsumerCoordinatorNotAvailable:
return "kafka server: Offset's topic has not yet been created."
case ErrNotCoordinatorForConsumer:
return "kafka server: Request was for a consumer group that is not coordinated by this broker."
case ErrInvalidTopic:
return "kafka server: The request attempted to perform an operation on an invalid topic."
case ErrMessageSetSizeTooLarge:
return "kafka server: The request included message batch larger than the configured segment size on the server."
case ErrNotEnoughReplicas:
return "kafka server: Messages are rejected since there are fewer in-sync replicas than required."
case ErrNotEnoughReplicasAfterAppend:
return "kafka server: Messages are written to the log, but to fewer in-sync replicas than required."
case ErrInvalidRequiredAcks:
return "kafka server: The number of required acks is invalid (should be either -1, 0, or 1)."
case ErrIllegalGeneration:
return "kafka server: The provided generation id is not the current generation."
case ErrInconsistentGroupProtocol:
return "kafka server: The provider group protocol type is incompatible with the other members."
case ErrInvalidGroupId:
return "kafka server: The provided group id was empty."
case ErrUnknownMemberId:
return "kafka server: The provided member is not known in the current generation."
case ErrInvalidSessionTimeout:
return "kafka server: The provided session timeout is outside the allowed range."
case ErrRebalanceInProgress:
return "kafka server: A rebalance for the group is in progress. Please re-join the group."
case ErrInvalidCommitOffsetSize:
return "kafka server: The provided commit metadata was too large."
case ErrTopicAuthorizationFailed:
return "kafka server: The client is not authorized to access this topic."
case ErrGroupAuthorizationFailed:
return "kafka server: The client is not authorized to access this group."
case ErrClusterAuthorizationFailed:
return "kafka server: The client is not authorized to send this request type."
case ErrInvalidTimestamp:
return "kafka server: The timestamp of the message is out of acceptable range."
case ErrUnsupportedSASLMechanism:
return "kafka server: The broker does not support the requested SASL mechanism."
case ErrIllegalSASLState:
return "kafka server: Request is not valid given the current SASL state."
case ErrUnsupportedVersion:
return "kafka server: The version of API is not supported."
case ErrTopicAlreadyExists:
return "kafka server: Topic with this name already exists."
case ErrInvalidPartitions:
return "kafka server: Number of partitions is invalid."
case ErrInvalidReplicationFactor:
return "kafka server: Replication-factor is invalid."
case ErrInvalidReplicaAssignment:
return "kafka server: Replica assignment is invalid."
case ErrInvalidConfig:
return "kafka server: Configuration is invalid."
case ErrNotController:
return "kafka server: This is not the correct controller for this cluster."
case ErrInvalidRequest:
return "kafka server: This most likely occurs because of a request being malformed by the client library or the message was sent to an incompatible broker. See the broker logs for more details."
case ErrUnsupportedForMessageFormat:
return "kafka server: The requested operation is not supported by the message format version."
case ErrPolicyViolation:
return "kafka server: Request parameters do not satisfy the configured policy."
case ErrOutOfOrderSequenceNumber:
return "kafka server: The broker received an out of order sequence number."
case ErrDuplicateSequenceNumber:
return "kafka server: The broker received a duplicate sequence number."
case ErrInvalidProducerEpoch:
return "kafka server: Producer attempted an operation with an old epoch."
case ErrInvalidTxnState:
return "kafka server: The producer attempted a transactional operation in an invalid state."
case ErrInvalidProducerIDMapping:
return "kafka server: The producer attempted to use a producer id which is not currently assigned to its transactional id."
case ErrInvalidTransactionTimeout:
return "kafka server: The transaction timeout is larger than the maximum value allowed by the broker (as configured by max.transaction.timeout.ms)."
case ErrConcurrentTransactions:
return "kafka server: The producer attempted to update a transaction while another concurrent operation on the same transaction was ongoing."
case ErrTransactionCoordinatorFenced:
return "kafka server: The transaction coordinator sending a WriteTxnMarker is no longer the current coordinator for a given producer."
case ErrTransactionalIDAuthorizationFailed:
return "kafka server: Transactional ID authorization failed."
case ErrSecurityDisabled:
return "kafka server: Security features are disabled."
case ErrOperationNotAttempted:
return "kafka server: The broker did not attempt to execute this operation."
case ErrKafkaStorageError:
return "kafka server: Disk error when trying to access log file on the disk."
case ErrLogDirNotFound:
return "kafka server: The specified log directory is not found in the broker config."
case ErrSASLAuthenticationFailed:
return "kafka server: SASL Authentication failed."
case ErrUnknownProducerID:
return "kafka server: The broker could not locate the producer metadata associated with the Producer ID."
case ErrReassignmentInProgress:
return "kafka server: A partition reassignment is in progress."
}
return fmt.Sprintf("Unknown error, how did this happen? Error code = %d", err)
}

170
vendor/github.com/Shopify/sarama/fetch_request.go generated vendored Normal file
View File

@ -0,0 +1,170 @@
package sarama
type fetchRequestBlock struct {
fetchOffset int64
maxBytes int32
}
func (b *fetchRequestBlock) encode(pe packetEncoder) error {
pe.putInt64(b.fetchOffset)
pe.putInt32(b.maxBytes)
return nil
}
func (b *fetchRequestBlock) decode(pd packetDecoder) (err error) {
if b.fetchOffset, err = pd.getInt64(); err != nil {
return err
}
if b.maxBytes, err = pd.getInt32(); err != nil {
return err
}
return nil
}
// FetchRequest (API key 1) will fetch Kafka messages. Version 3 introduced the MaxBytes field. See
// https://issues.apache.org/jira/browse/KAFKA-2063 for a discussion of the issues leading up to that. The KIP is at
// https://cwiki.apache.org/confluence/display/KAFKA/KIP-74%3A+Add+Fetch+Response+Size+Limit+in+Bytes
type FetchRequest struct {
MaxWaitTime int32
MinBytes int32
MaxBytes int32
Version int16
Isolation IsolationLevel
blocks map[string]map[int32]*fetchRequestBlock
}
type IsolationLevel int8
const (
ReadUncommitted IsolationLevel = 0
ReadCommitted IsolationLevel = 1
)
func (r *FetchRequest) encode(pe packetEncoder) (err error) {
pe.putInt32(-1) // replica ID is always -1 for clients
pe.putInt32(r.MaxWaitTime)
pe.putInt32(r.MinBytes)
if r.Version >= 3 {
pe.putInt32(r.MaxBytes)
}
if r.Version >= 4 {
pe.putInt8(int8(r.Isolation))
}
err = pe.putArrayLength(len(r.blocks))
if err != nil {
return err
}
for topic, blocks := range r.blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(blocks))
if err != nil {
return err
}
for partition, block := range blocks {
pe.putInt32(partition)
err = block.encode(pe)
if err != nil {
return err
}
}
}
return nil
}
func (r *FetchRequest) decode(pd packetDecoder, version int16) (err error) {
r.Version = version
if _, err = pd.getInt32(); err != nil {
return err
}
if r.MaxWaitTime, err = pd.getInt32(); err != nil {
return err
}
if r.MinBytes, err = pd.getInt32(); err != nil {
return err
}
if r.Version >= 3 {
if r.MaxBytes, err = pd.getInt32(); err != nil {
return err
}
}
if r.Version >= 4 {
isolation, err := pd.getInt8()
if err != nil {
return err
}
r.Isolation = IsolationLevel(isolation)
}
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
r.blocks = make(map[string]map[int32]*fetchRequestBlock)
for i := 0; i < topicCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
r.blocks[topic] = make(map[int32]*fetchRequestBlock)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
fetchBlock := &fetchRequestBlock{}
if err = fetchBlock.decode(pd); err != nil {
return err
}
r.blocks[topic][partition] = fetchBlock
}
}
return nil
}
func (r *FetchRequest) key() int16 {
return 1
}
func (r *FetchRequest) version() int16 {
return r.Version
}
func (r *FetchRequest) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_9_0_0
case 2:
return V0_10_0_0
case 3:
return V0_10_1_0
case 4:
return V0_11_0_0
default:
return minVersion
}
}
func (r *FetchRequest) AddBlock(topic string, partitionID int32, fetchOffset int64, maxBytes int32) {
if r.blocks == nil {
r.blocks = make(map[string]map[int32]*fetchRequestBlock)
}
if r.blocks[topic] == nil {
r.blocks[topic] = make(map[int32]*fetchRequestBlock)
}
tmp := new(fetchRequestBlock)
tmp.maxBytes = maxBytes
tmp.fetchOffset = fetchOffset
r.blocks[topic][partitionID] = tmp
}

315
vendor/github.com/Shopify/sarama/fetch_response.go generated vendored Normal file
View File

@ -0,0 +1,315 @@
package sarama
import "time"
type AbortedTransaction struct {
ProducerID int64
FirstOffset int64
}
func (t *AbortedTransaction) decode(pd packetDecoder) (err error) {
if t.ProducerID, err = pd.getInt64(); err != nil {
return err
}
if t.FirstOffset, err = pd.getInt64(); err != nil {
return err
}
return nil
}
func (t *AbortedTransaction) encode(pe packetEncoder) (err error) {
pe.putInt64(t.ProducerID)
pe.putInt64(t.FirstOffset)
return nil
}
type FetchResponseBlock struct {
Err KError
HighWaterMarkOffset int64
LastStableOffset int64
AbortedTransactions []*AbortedTransaction
Records Records
}
func (b *FetchResponseBlock) decode(pd packetDecoder, version int16) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
b.Err = KError(tmp)
b.HighWaterMarkOffset, err = pd.getInt64()
if err != nil {
return err
}
if version >= 4 {
b.LastStableOffset, err = pd.getInt64()
if err != nil {
return err
}
numTransact, err := pd.getArrayLength()
if err != nil {
return err
}
if numTransact >= 0 {
b.AbortedTransactions = make([]*AbortedTransaction, numTransact)
}
for i := 0; i < numTransact; i++ {
transact := new(AbortedTransaction)
if err = transact.decode(pd); err != nil {
return err
}
b.AbortedTransactions[i] = transact
}
}
recordsSize, err := pd.getInt32()
if err != nil {
return err
}
recordsDecoder, err := pd.getSubset(int(recordsSize))
if err != nil {
return err
}
if recordsSize > 0 {
if err = b.Records.decode(recordsDecoder); err != nil {
return err
}
}
return nil
}
func (b *FetchResponseBlock) encode(pe packetEncoder, version int16) (err error) {
pe.putInt16(int16(b.Err))
pe.putInt64(b.HighWaterMarkOffset)
if version >= 4 {
pe.putInt64(b.LastStableOffset)
if err = pe.putArrayLength(len(b.AbortedTransactions)); err != nil {
return err
}
for _, transact := range b.AbortedTransactions {
if err = transact.encode(pe); err != nil {
return err
}
}
}
pe.push(&lengthField{})
err = b.Records.encode(pe)
if err != nil {
return err
}
return pe.pop()
}
type FetchResponse struct {
Blocks map[string]map[int32]*FetchResponseBlock
ThrottleTime time.Duration
Version int16 // v1 requires 0.9+, v2 requires 0.10+
}
func (r *FetchResponse) decode(pd packetDecoder, version int16) (err error) {
r.Version = version
if r.Version >= 1 {
throttle, err := pd.getInt32()
if err != nil {
return err
}
r.ThrottleTime = time.Duration(throttle) * time.Millisecond
}
numTopics, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks = make(map[string]map[int32]*FetchResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks[name] = make(map[int32]*FetchResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(FetchResponseBlock)
err = block.decode(pd, version)
if err != nil {
return err
}
r.Blocks[name][id] = block
}
}
return nil
}
func (r *FetchResponse) encode(pe packetEncoder) (err error) {
if r.Version >= 1 {
pe.putInt32(int32(r.ThrottleTime / time.Millisecond))
}
err = pe.putArrayLength(len(r.Blocks))
if err != nil {
return err
}
for topic, partitions := range r.Blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
for id, block := range partitions {
pe.putInt32(id)
err = block.encode(pe, r.Version)
if err != nil {
return err
}
}
}
return nil
}
func (r *FetchResponse) key() int16 {
return 1
}
func (r *FetchResponse) version() int16 {
return r.Version
}
func (r *FetchResponse) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_9_0_0
case 2:
return V0_10_0_0
case 3:
return V0_10_1_0
case 4:
return V0_11_0_0
default:
return minVersion
}
}
func (r *FetchResponse) GetBlock(topic string, partition int32) *FetchResponseBlock {
if r.Blocks == nil {
return nil
}
if r.Blocks[topic] == nil {
return nil
}
return r.Blocks[topic][partition]
}
func (r *FetchResponse) AddError(topic string, partition int32, err KError) {
if r.Blocks == nil {
r.Blocks = make(map[string]map[int32]*FetchResponseBlock)
}
partitions, ok := r.Blocks[topic]
if !ok {
partitions = make(map[int32]*FetchResponseBlock)
r.Blocks[topic] = partitions
}
frb, ok := partitions[partition]
if !ok {
frb = new(FetchResponseBlock)
partitions[partition] = frb
}
frb.Err = err
}
func (r *FetchResponse) getOrCreateBlock(topic string, partition int32) *FetchResponseBlock {
if r.Blocks == nil {
r.Blocks = make(map[string]map[int32]*FetchResponseBlock)
}
partitions, ok := r.Blocks[topic]
if !ok {
partitions = make(map[int32]*FetchResponseBlock)
r.Blocks[topic] = partitions
}
frb, ok := partitions[partition]
if !ok {
frb = new(FetchResponseBlock)
partitions[partition] = frb
}
return frb
}
func encodeKV(key, value Encoder) ([]byte, []byte) {
var kb []byte
var vb []byte
if key != nil {
kb, _ = key.Encode()
}
if value != nil {
vb, _ = value.Encode()
}
return kb, vb
}
func (r *FetchResponse) AddMessage(topic string, partition int32, key, value Encoder, offset int64) {
frb := r.getOrCreateBlock(topic, partition)
kb, vb := encodeKV(key, value)
msg := &Message{Key: kb, Value: vb}
msgBlock := &MessageBlock{Msg: msg, Offset: offset}
set := frb.Records.msgSet
if set == nil {
set = &MessageSet{}
frb.Records = newLegacyRecords(set)
}
set.Messages = append(set.Messages, msgBlock)
}
func (r *FetchResponse) AddRecord(topic string, partition int32, key, value Encoder, offset int64) {
frb := r.getOrCreateBlock(topic, partition)
kb, vb := encodeKV(key, value)
rec := &Record{Key: kb, Value: vb, OffsetDelta: offset}
batch := frb.Records.recordBatch
if batch == nil {
batch = &RecordBatch{Version: 2}
frb.Records = newDefaultRecords(batch)
}
batch.addRecord(rec)
}
func (r *FetchResponse) SetLastStableOffset(topic string, partition int32, offset int64) {
frb := r.getOrCreateBlock(topic, partition)
frb.LastStableOffset = offset
}

47
vendor/github.com/Shopify/sarama/heartbeat_request.go generated vendored Normal file
View File

@ -0,0 +1,47 @@
package sarama
type HeartbeatRequest struct {
GroupId string
GenerationId int32
MemberId string
}
func (r *HeartbeatRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
pe.putInt32(r.GenerationId)
if err := pe.putString(r.MemberId); err != nil {
return err
}
return nil
}
func (r *HeartbeatRequest) decode(pd packetDecoder, version int16) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.GenerationId, err = pd.getInt32(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
return nil
}
func (r *HeartbeatRequest) key() int16 {
return 12
}
func (r *HeartbeatRequest) version() int16 {
return 0
}
func (r *HeartbeatRequest) requiredVersion() KafkaVersion {
return V0_9_0_0
}

32
vendor/github.com/Shopify/sarama/heartbeat_response.go generated vendored Normal file
View File

@ -0,0 +1,32 @@
package sarama
type HeartbeatResponse struct {
Err KError
}
func (r *HeartbeatResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
return nil
}
func (r *HeartbeatResponse) decode(pd packetDecoder, version int16) error {
kerr, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(kerr)
return nil
}
func (r *HeartbeatResponse) key() int16 {
return 12
}
func (r *HeartbeatResponse) version() int16 {
return 0
}
func (r *HeartbeatResponse) requiredVersion() KafkaVersion {
return V0_9_0_0
}

143
vendor/github.com/Shopify/sarama/join_group_request.go generated vendored Normal file
View File

@ -0,0 +1,143 @@
package sarama
type GroupProtocol struct {
Name string
Metadata []byte
}
func (p *GroupProtocol) decode(pd packetDecoder) (err error) {
p.Name, err = pd.getString()
if err != nil {
return err
}
p.Metadata, err = pd.getBytes()
return err
}
func (p *GroupProtocol) encode(pe packetEncoder) (err error) {
if err := pe.putString(p.Name); err != nil {
return err
}
if err := pe.putBytes(p.Metadata); err != nil {
return err
}
return nil
}
type JoinGroupRequest struct {
GroupId string
SessionTimeout int32
MemberId string
ProtocolType string
GroupProtocols map[string][]byte // deprecated; use OrderedGroupProtocols
OrderedGroupProtocols []*GroupProtocol
}
func (r *JoinGroupRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
pe.putInt32(r.SessionTimeout)
if err := pe.putString(r.MemberId); err != nil {
return err
}
if err := pe.putString(r.ProtocolType); err != nil {
return err
}
if len(r.GroupProtocols) > 0 {
if len(r.OrderedGroupProtocols) > 0 {
return PacketDecodingError{"cannot specify both GroupProtocols and OrderedGroupProtocols on JoinGroupRequest"}
}
if err := pe.putArrayLength(len(r.GroupProtocols)); err != nil {
return err
}
for name, metadata := range r.GroupProtocols {
if err := pe.putString(name); err != nil {
return err
}
if err := pe.putBytes(metadata); err != nil {
return err
}
}
} else {
if err := pe.putArrayLength(len(r.OrderedGroupProtocols)); err != nil {
return err
}
for _, protocol := range r.OrderedGroupProtocols {
if err := protocol.encode(pe); err != nil {
return err
}
}
}
return nil
}
func (r *JoinGroupRequest) decode(pd packetDecoder, version int16) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.SessionTimeout, err = pd.getInt32(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
if r.ProtocolType, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.GroupProtocols = make(map[string][]byte)
for i := 0; i < n; i++ {
protocol := &GroupProtocol{}
if err := protocol.decode(pd); err != nil {
return err
}
r.GroupProtocols[protocol.Name] = protocol.Metadata
r.OrderedGroupProtocols = append(r.OrderedGroupProtocols, protocol)
}
return nil
}
func (r *JoinGroupRequest) key() int16 {
return 11
}
func (r *JoinGroupRequest) version() int16 {
return 0
}
func (r *JoinGroupRequest) requiredVersion() KafkaVersion {
return V0_9_0_0
}
func (r *JoinGroupRequest) AddGroupProtocol(name string, metadata []byte) {
r.OrderedGroupProtocols = append(r.OrderedGroupProtocols, &GroupProtocol{
Name: name,
Metadata: metadata,
})
}
func (r *JoinGroupRequest) AddGroupProtocolMetadata(name string, metadata *ConsumerGroupMemberMetadata) error {
bin, err := encode(metadata, nil)
if err != nil {
return err
}
r.AddGroupProtocol(name, bin)
return nil
}

115
vendor/github.com/Shopify/sarama/join_group_response.go generated vendored Normal file
View File

@ -0,0 +1,115 @@
package sarama
type JoinGroupResponse struct {
Err KError
GenerationId int32
GroupProtocol string
LeaderId string
MemberId string
Members map[string][]byte
}
func (r *JoinGroupResponse) GetMembers() (map[string]ConsumerGroupMemberMetadata, error) {
members := make(map[string]ConsumerGroupMemberMetadata, len(r.Members))
for id, bin := range r.Members {
meta := new(ConsumerGroupMemberMetadata)
if err := decode(bin, meta); err != nil {
return nil, err
}
members[id] = *meta
}
return members, nil
}
func (r *JoinGroupResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
pe.putInt32(r.GenerationId)
if err := pe.putString(r.GroupProtocol); err != nil {
return err
}
if err := pe.putString(r.LeaderId); err != nil {
return err
}
if err := pe.putString(r.MemberId); err != nil {
return err
}
if err := pe.putArrayLength(len(r.Members)); err != nil {
return err
}
for memberId, memberMetadata := range r.Members {
if err := pe.putString(memberId); err != nil {
return err
}
if err := pe.putBytes(memberMetadata); err != nil {
return err
}
}
return nil
}
func (r *JoinGroupResponse) decode(pd packetDecoder, version int16) (err error) {
kerr, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(kerr)
if r.GenerationId, err = pd.getInt32(); err != nil {
return
}
if r.GroupProtocol, err = pd.getString(); err != nil {
return
}
if r.LeaderId, err = pd.getString(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.Members = make(map[string][]byte)
for i := 0; i < n; i++ {
memberId, err := pd.getString()
if err != nil {
return err
}
memberMetadata, err := pd.getBytes()
if err != nil {
return err
}
r.Members[memberId] = memberMetadata
}
return nil
}
func (r *JoinGroupResponse) key() int16 {
return 11
}
func (r *JoinGroupResponse) version() int16 {
return 0
}
func (r *JoinGroupResponse) requiredVersion() KafkaVersion {
return V0_9_0_0
}

View File

@ -0,0 +1,40 @@
package sarama
type LeaveGroupRequest struct {
GroupId string
MemberId string
}
func (r *LeaveGroupRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
if err := pe.putString(r.MemberId); err != nil {
return err
}
return nil
}
func (r *LeaveGroupRequest) decode(pd packetDecoder, version int16) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
return nil
}
func (r *LeaveGroupRequest) key() int16 {
return 13
}
func (r *LeaveGroupRequest) version() int16 {
return 0
}
func (r *LeaveGroupRequest) requiredVersion() KafkaVersion {
return V0_9_0_0
}

View File

@ -0,0 +1,32 @@
package sarama
type LeaveGroupResponse struct {
Err KError
}
func (r *LeaveGroupResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
return nil
}
func (r *LeaveGroupResponse) decode(pd packetDecoder, version int16) (err error) {
kerr, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(kerr)
return nil
}
func (r *LeaveGroupResponse) key() int16 {
return 13
}
func (r *LeaveGroupResponse) version() int16 {
return 0
}
func (r *LeaveGroupResponse) requiredVersion() KafkaVersion {
return V0_9_0_0
}

69
vendor/github.com/Shopify/sarama/length_field.go generated vendored Normal file
View File

@ -0,0 +1,69 @@
package sarama
import "encoding/binary"
// LengthField implements the PushEncoder and PushDecoder interfaces for calculating 4-byte lengths.
type lengthField struct {
startOffset int
}
func (l *lengthField) saveOffset(in int) {
l.startOffset = in
}
func (l *lengthField) reserveLength() int {
return 4
}
func (l *lengthField) run(curOffset int, buf []byte) error {
binary.BigEndian.PutUint32(buf[l.startOffset:], uint32(curOffset-l.startOffset-4))
return nil
}
func (l *lengthField) check(curOffset int, buf []byte) error {
if uint32(curOffset-l.startOffset-4) != binary.BigEndian.Uint32(buf[l.startOffset:]) {
return PacketDecodingError{"length field invalid"}
}
return nil
}
type varintLengthField struct {
startOffset int
length int64
}
func (l *varintLengthField) decode(pd packetDecoder) error {
var err error
l.length, err = pd.getVarint()
return err
}
func (l *varintLengthField) saveOffset(in int) {
l.startOffset = in
}
func (l *varintLengthField) adjustLength(currOffset int) int {
oldFieldSize := l.reserveLength()
l.length = int64(currOffset - l.startOffset - oldFieldSize)
return l.reserveLength() - oldFieldSize
}
func (l *varintLengthField) reserveLength() int {
var tmp [binary.MaxVarintLen64]byte
return binary.PutVarint(tmp[:], l.length)
}
func (l *varintLengthField) run(curOffset int, buf []byte) error {
binary.PutVarint(buf[l.startOffset:], l.length)
return nil
}
func (l *varintLengthField) check(curOffset int, buf []byte) error {
if int64(curOffset-l.startOffset-l.reserveLength()) != l.length {
return PacketDecodingError{"length field invalid"}
}
return nil
}

View File

@ -0,0 +1,24 @@
package sarama
type ListGroupsRequest struct {
}
func (r *ListGroupsRequest) encode(pe packetEncoder) error {
return nil
}
func (r *ListGroupsRequest) decode(pd packetDecoder, version int16) (err error) {
return nil
}
func (r *ListGroupsRequest) key() int16 {
return 16
}
func (r *ListGroupsRequest) version() int16 {
return 0
}
func (r *ListGroupsRequest) requiredVersion() KafkaVersion {
return V0_9_0_0
}

View File

@ -0,0 +1,69 @@
package sarama
type ListGroupsResponse struct {
Err KError
Groups map[string]string
}
func (r *ListGroupsResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
if err := pe.putArrayLength(len(r.Groups)); err != nil {
return err
}
for groupId, protocolType := range r.Groups {
if err := pe.putString(groupId); err != nil {
return err
}
if err := pe.putString(protocolType); err != nil {
return err
}
}
return nil
}
func (r *ListGroupsResponse) decode(pd packetDecoder, version int16) error {
kerr, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(kerr)
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.Groups = make(map[string]string)
for i := 0; i < n; i++ {
groupId, err := pd.getString()
if err != nil {
return err
}
protocolType, err := pd.getString()
if err != nil {
return err
}
r.Groups[groupId] = protocolType
}
return nil
}
func (r *ListGroupsResponse) key() int16 {
return 16
}
func (r *ListGroupsResponse) version() int16 {
return 0
}
func (r *ListGroupsResponse) requiredVersion() KafkaVersion {
return V0_9_0_0
}

200
vendor/github.com/Shopify/sarama/message.go generated vendored Normal file
View File

@ -0,0 +1,200 @@
package sarama
import (
"bytes"
"compress/gzip"
"fmt"
"io/ioutil"
"time"
"github.com/eapache/go-xerial-snappy"
"github.com/pierrec/lz4"
)
// CompressionCodec represents the various compression codecs recognized by Kafka in messages.
type CompressionCodec int8
// only the last two bits are really used
const compressionCodecMask int8 = 0x03
const (
CompressionNone CompressionCodec = 0
CompressionGZIP CompressionCodec = 1
CompressionSnappy CompressionCodec = 2
CompressionLZ4 CompressionCodec = 3
)
type Message struct {
Codec CompressionCodec // codec used to compress the message contents
Key []byte // the message key, may be nil
Value []byte // the message contents
Set *MessageSet // the message set a message might wrap
Version int8 // v1 requires Kafka 0.10
Timestamp time.Time // the timestamp of the message (version 1+ only)
compressedCache []byte
compressedSize int // used for computing the compression ratio metrics
}
func (m *Message) encode(pe packetEncoder) error {
pe.push(newCRC32Field(crcIEEE))
pe.putInt8(m.Version)
attributes := int8(m.Codec) & compressionCodecMask
pe.putInt8(attributes)
if m.Version >= 1 {
if err := (Timestamp{&m.Timestamp}).encode(pe); err != nil {
return err
}
}
err := pe.putBytes(m.Key)
if err != nil {
return err
}
var payload []byte
if m.compressedCache != nil {
payload = m.compressedCache
m.compressedCache = nil
} else if m.Value != nil {
switch m.Codec {
case CompressionNone:
payload = m.Value
case CompressionGZIP:
var buf bytes.Buffer
writer := gzip.NewWriter(&buf)
if _, err = writer.Write(m.Value); err != nil {
return err
}
if err = writer.Close(); err != nil {
return err
}
m.compressedCache = buf.Bytes()
payload = m.compressedCache
case CompressionSnappy:
tmp := snappy.Encode(m.Value)
m.compressedCache = tmp
payload = m.compressedCache
case CompressionLZ4:
var buf bytes.Buffer
writer := lz4.NewWriter(&buf)
if _, err = writer.Write(m.Value); err != nil {
return err
}
if err = writer.Close(); err != nil {
return err
}
m.compressedCache = buf.Bytes()
payload = m.compressedCache
default:
return PacketEncodingError{fmt.Sprintf("unsupported compression codec (%d)", m.Codec)}
}
// Keep in mind the compressed payload size for metric gathering
m.compressedSize = len(payload)
}
if err = pe.putBytes(payload); err != nil {
return err
}
return pe.pop()
}
func (m *Message) decode(pd packetDecoder) (err error) {
err = pd.push(newCRC32Field(crcIEEE))
if err != nil {
return err
}
m.Version, err = pd.getInt8()
if err != nil {
return err
}
if m.Version > 1 {
return PacketDecodingError{fmt.Sprintf("unknown magic byte (%v)", m.Version)}
}
attribute, err := pd.getInt8()
if err != nil {
return err
}
m.Codec = CompressionCodec(attribute & compressionCodecMask)
if m.Version == 1 {
if err := (Timestamp{&m.Timestamp}).decode(pd); err != nil {
return err
}
}
m.Key, err = pd.getBytes()
if err != nil {
return err
}
m.Value, err = pd.getBytes()
if err != nil {
return err
}
// Required for deep equal assertion during tests but might be useful
// for future metrics about the compression ratio in fetch requests
m.compressedSize = len(m.Value)
switch m.Codec {
case CompressionNone:
// nothing to do
case CompressionGZIP:
if m.Value == nil {
break
}
reader, err := gzip.NewReader(bytes.NewReader(m.Value))
if err != nil {
return err
}
if m.Value, err = ioutil.ReadAll(reader); err != nil {
return err
}
if err := m.decodeSet(); err != nil {
return err
}
case CompressionSnappy:
if m.Value == nil {
break
}
if m.Value, err = snappy.Decode(m.Value); err != nil {
return err
}
if err := m.decodeSet(); err != nil {
return err
}
case CompressionLZ4:
if m.Value == nil {
break
}
reader := lz4.NewReader(bytes.NewReader(m.Value))
if m.Value, err = ioutil.ReadAll(reader); err != nil {
return err
}
if err := m.decodeSet(); err != nil {
return err
}
default:
return PacketDecodingError{fmt.Sprintf("invalid compression specified (%d)", m.Codec)}
}
return pd.pop()
}
// decodes a message set from a previousy encoded bulk-message
func (m *Message) decodeSet() (err error) {
pd := realDecoder{raw: m.Value}
m.Set = &MessageSet{}
return m.Set.decode(&pd)
}

89
vendor/github.com/Shopify/sarama/message_set.go generated vendored Normal file
View File

@ -0,0 +1,89 @@
package sarama
type MessageBlock struct {
Offset int64
Msg *Message
}
// Messages convenience helper which returns either all the
// messages that are wrapped in this block
func (msb *MessageBlock) Messages() []*MessageBlock {
if msb.Msg.Set != nil {
return msb.Msg.Set.Messages
}
return []*MessageBlock{msb}
}
func (msb *MessageBlock) encode(pe packetEncoder) error {
pe.putInt64(msb.Offset)
pe.push(&lengthField{})
err := msb.Msg.encode(pe)
if err != nil {
return err
}
return pe.pop()
}
func (msb *MessageBlock) decode(pd packetDecoder) (err error) {
if msb.Offset, err = pd.getInt64(); err != nil {
return err
}
if err = pd.push(&lengthField{}); err != nil {
return err
}
msb.Msg = new(Message)
if err = msb.Msg.decode(pd); err != nil {
return err
}
if err = pd.pop(); err != nil {
return err
}
return nil
}
type MessageSet struct {
PartialTrailingMessage bool // whether the set on the wire contained an incomplete trailing MessageBlock
Messages []*MessageBlock
}
func (ms *MessageSet) encode(pe packetEncoder) error {
for i := range ms.Messages {
err := ms.Messages[i].encode(pe)
if err != nil {
return err
}
}
return nil
}
func (ms *MessageSet) decode(pd packetDecoder) (err error) {
ms.Messages = nil
for pd.remaining() > 0 {
msb := new(MessageBlock)
err = msb.decode(pd)
switch err {
case nil:
ms.Messages = append(ms.Messages, msb)
case ErrInsufficientData:
// As an optimization the server is allowed to return a partial message at the
// end of the message set. Clients should handle this case. So we just ignore such things.
ms.PartialTrailingMessage = true
return nil
default:
return err
}
}
return nil
}
func (ms *MessageSet) addMessage(msg *Message) {
block := new(MessageBlock)
block.Msg = msg
ms.Messages = append(ms.Messages, block)
}

52
vendor/github.com/Shopify/sarama/metadata_request.go generated vendored Normal file
View File

@ -0,0 +1,52 @@
package sarama
type MetadataRequest struct {
Topics []string
}
func (r *MetadataRequest) encode(pe packetEncoder) error {
err := pe.putArrayLength(len(r.Topics))
if err != nil {
return err
}
for i := range r.Topics {
err = pe.putString(r.Topics[i])
if err != nil {
return err
}
}
return nil
}
func (r *MetadataRequest) decode(pd packetDecoder, version int16) error {
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
r.Topics = make([]string, topicCount)
for i := range r.Topics {
topic, err := pd.getString()
if err != nil {
return err
}
r.Topics[i] = topic
}
return nil
}
func (r *MetadataRequest) key() int16 {
return 3
}
func (r *MetadataRequest) version() int16 {
return 0
}
func (r *MetadataRequest) requiredVersion() KafkaVersion {
return minVersion
}

239
vendor/github.com/Shopify/sarama/metadata_response.go generated vendored Normal file
View File

@ -0,0 +1,239 @@
package sarama
type PartitionMetadata struct {
Err KError
ID int32
Leader int32
Replicas []int32
Isr []int32
}
func (pm *PartitionMetadata) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
pm.Err = KError(tmp)
pm.ID, err = pd.getInt32()
if err != nil {
return err
}
pm.Leader, err = pd.getInt32()
if err != nil {
return err
}
pm.Replicas, err = pd.getInt32Array()
if err != nil {
return err
}
pm.Isr, err = pd.getInt32Array()
if err != nil {
return err
}
return nil
}
func (pm *PartitionMetadata) encode(pe packetEncoder) (err error) {
pe.putInt16(int16(pm.Err))
pe.putInt32(pm.ID)
pe.putInt32(pm.Leader)
err = pe.putInt32Array(pm.Replicas)
if err != nil {
return err
}
err = pe.putInt32Array(pm.Isr)
if err != nil {
return err
}
return nil
}
type TopicMetadata struct {
Err KError
Name string
Partitions []*PartitionMetadata
}
func (tm *TopicMetadata) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
tm.Err = KError(tmp)
tm.Name, err = pd.getString()
if err != nil {
return err
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
tm.Partitions = make([]*PartitionMetadata, n)
for i := 0; i < n; i++ {
tm.Partitions[i] = new(PartitionMetadata)
err = tm.Partitions[i].decode(pd)
if err != nil {
return err
}
}
return nil
}
func (tm *TopicMetadata) encode(pe packetEncoder) (err error) {
pe.putInt16(int16(tm.Err))
err = pe.putString(tm.Name)
if err != nil {
return err
}
err = pe.putArrayLength(len(tm.Partitions))
if err != nil {
return err
}
for _, pm := range tm.Partitions {
err = pm.encode(pe)
if err != nil {
return err
}
}
return nil
}
type MetadataResponse struct {
Brokers []*Broker
Topics []*TopicMetadata
}
func (r *MetadataResponse) decode(pd packetDecoder, version int16) (err error) {
n, err := pd.getArrayLength()
if err != nil {
return err
}
r.Brokers = make([]*Broker, n)
for i := 0; i < n; i++ {
r.Brokers[i] = new(Broker)
err = r.Brokers[i].decode(pd)
if err != nil {
return err
}
}
n, err = pd.getArrayLength()
if err != nil {
return err
}
r.Topics = make([]*TopicMetadata, n)
for i := 0; i < n; i++ {
r.Topics[i] = new(TopicMetadata)
err = r.Topics[i].decode(pd)
if err != nil {
return err
}
}
return nil
}
func (r *MetadataResponse) encode(pe packetEncoder) error {
err := pe.putArrayLength(len(r.Brokers))
if err != nil {
return err
}
for _, broker := range r.Brokers {
err = broker.encode(pe)
if err != nil {
return err
}
}
err = pe.putArrayLength(len(r.Topics))
if err != nil {
return err
}
for _, tm := range r.Topics {
err = tm.encode(pe)
if err != nil {
return err
}
}
return nil
}
func (r *MetadataResponse) key() int16 {
return 3
}
func (r *MetadataResponse) version() int16 {
return 0
}
func (r *MetadataResponse) requiredVersion() KafkaVersion {
return minVersion
}
// testing API
func (r *MetadataResponse) AddBroker(addr string, id int32) {
r.Brokers = append(r.Brokers, &Broker{id: id, addr: addr})
}
func (r *MetadataResponse) AddTopic(topic string, err KError) *TopicMetadata {
var tmatch *TopicMetadata
for _, tm := range r.Topics {
if tm.Name == topic {
tmatch = tm
goto foundTopic
}
}
tmatch = new(TopicMetadata)
tmatch.Name = topic
r.Topics = append(r.Topics, tmatch)
foundTopic:
tmatch.Err = err
return tmatch
}
func (r *MetadataResponse) AddTopicPartition(topic string, partition, brokerID int32, replicas, isr []int32, err KError) {
tmatch := r.AddTopic(topic, ErrNoError)
var pmatch *PartitionMetadata
for _, pm := range tmatch.Partitions {
if pm.ID == partition {
pmatch = pm
goto foundPartition
}
}
pmatch = new(PartitionMetadata)
pmatch.ID = partition
tmatch.Partitions = append(tmatch.Partitions, pmatch)
foundPartition:
pmatch.Leader = brokerID
pmatch.Replicas = replicas
pmatch.Isr = isr
pmatch.Err = err
}

51
vendor/github.com/Shopify/sarama/metrics.go generated vendored Normal file
View File

@ -0,0 +1,51 @@
package sarama
import (
"fmt"
"strings"
"github.com/rcrowley/go-metrics"
)
// Use exponentially decaying reservoir for sampling histograms with the same defaults as the Java library:
// 1028 elements, which offers a 99.9% confidence level with a 5% margin of error assuming a normal distribution,
// and an alpha factor of 0.015, which heavily biases the reservoir to the past 5 minutes of measurements.
// See https://github.com/dropwizard/metrics/blob/v3.1.0/metrics-core/src/main/java/com/codahale/metrics/ExponentiallyDecayingReservoir.java#L38
const (
metricsReservoirSize = 1028
metricsAlphaFactor = 0.015
)
func getOrRegisterHistogram(name string, r metrics.Registry) metrics.Histogram {
return r.GetOrRegister(name, func() metrics.Histogram {
return metrics.NewHistogram(metrics.NewExpDecaySample(metricsReservoirSize, metricsAlphaFactor))
}).(metrics.Histogram)
}
func getMetricNameForBroker(name string, broker *Broker) string {
// Use broker id like the Java client as it does not contain '.' or ':' characters that
// can be interpreted as special character by monitoring tool (e.g. Graphite)
return fmt.Sprintf(name+"-for-broker-%d", broker.ID())
}
func getOrRegisterBrokerMeter(name string, broker *Broker, r metrics.Registry) metrics.Meter {
return metrics.GetOrRegisterMeter(getMetricNameForBroker(name, broker), r)
}
func getOrRegisterBrokerHistogram(name string, broker *Broker, r metrics.Registry) metrics.Histogram {
return getOrRegisterHistogram(getMetricNameForBroker(name, broker), r)
}
func getMetricNameForTopic(name string, topic string) string {
// Convert dot to _ since reporters like Graphite typically use dot to represent hierarchy
// cf. KAFKA-1902 and KAFKA-2337
return fmt.Sprintf(name+"-for-topic-%s", strings.Replace(topic, ".", "_", -1))
}
func getOrRegisterTopicMeter(name string, topic string, r metrics.Registry) metrics.Meter {
return metrics.GetOrRegisterMeter(getMetricNameForTopic(name, topic), r)
}
func getOrRegisterTopicHistogram(name string, topic string, r metrics.Registry) metrics.Histogram {
return getOrRegisterHistogram(getMetricNameForTopic(name, topic), r)
}

324
vendor/github.com/Shopify/sarama/mockbroker.go generated vendored Normal file
View File

@ -0,0 +1,324 @@
package sarama
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"net"
"reflect"
"strconv"
"sync"
"time"
"github.com/davecgh/go-spew/spew"
)
const (
expectationTimeout = 500 * time.Millisecond
)
type requestHandlerFunc func(req *request) (res encoder)
// RequestNotifierFunc is invoked when a mock broker processes a request successfully
// and will provides the number of bytes read and written.
type RequestNotifierFunc func(bytesRead, bytesWritten int)
// MockBroker is a mock Kafka broker that is used in unit tests. It is exposed
// to facilitate testing of higher level or specialized consumers and producers
// built on top of Sarama. Note that it does not 'mimic' the Kafka API protocol,
// but rather provides a facility to do that. It takes care of the TCP
// transport, request unmarshaling, response marshaling, and makes it the test
// writer responsibility to program correct according to the Kafka API protocol
// MockBroker behaviour.
//
// MockBroker is implemented as a TCP server listening on a kernel-selected
// localhost port that can accept many connections. It reads Kafka requests
// from that connection and returns responses programmed by the SetHandlerByMap
// function. If a MockBroker receives a request that it has no programmed
// response for, then it returns nothing and the request times out.
//
// A set of MockRequest builders to define mappings used by MockBroker is
// provided by Sarama. But users can develop MockRequests of their own and use
// them along with or instead of the standard ones.
//
// When running tests with MockBroker it is strongly recommended to specify
// a timeout to `go test` so that if the broker hangs waiting for a response,
// the test panics.
//
// It is not necessary to prefix message length or correlation ID to your
// response bytes, the server does that automatically as a convenience.
type MockBroker struct {
brokerID int32
port int32
closing chan none
stopper chan none
expectations chan encoder
listener net.Listener
t TestReporter
latency time.Duration
handler requestHandlerFunc
notifier RequestNotifierFunc
history []RequestResponse
lock sync.Mutex
}
// RequestResponse represents a Request/Response pair processed by MockBroker.
type RequestResponse struct {
Request protocolBody
Response encoder
}
// SetLatency makes broker pause for the specified period every time before
// replying.
func (b *MockBroker) SetLatency(latency time.Duration) {
b.latency = latency
}
// SetHandlerByMap defines mapping of Request types to MockResponses. When a
// request is received by the broker, it looks up the request type in the map
// and uses the found MockResponse instance to generate an appropriate reply.
// If the request type is not found in the map then nothing is sent.
func (b *MockBroker) SetHandlerByMap(handlerMap map[string]MockResponse) {
b.setHandler(func(req *request) (res encoder) {
reqTypeName := reflect.TypeOf(req.body).Elem().Name()
mockResponse := handlerMap[reqTypeName]
if mockResponse == nil {
return nil
}
return mockResponse.For(req.body)
})
}
// SetNotifier set a function that will get invoked whenever a request has been
// processed successfully and will provide the number of bytes read and written
func (b *MockBroker) SetNotifier(notifier RequestNotifierFunc) {
b.lock.Lock()
b.notifier = notifier
b.lock.Unlock()
}
// BrokerID returns broker ID assigned to the broker.
func (b *MockBroker) BrokerID() int32 {
return b.brokerID
}
// History returns a slice of RequestResponse pairs in the order they were
// processed by the broker. Note that in case of multiple connections to the
// broker the order expected by a test can be different from the order recorded
// in the history, unless some synchronization is implemented in the test.
func (b *MockBroker) History() []RequestResponse {
b.lock.Lock()
history := make([]RequestResponse, len(b.history))
copy(history, b.history)
b.lock.Unlock()
return history
}
// Port returns the TCP port number the broker is listening for requests on.
func (b *MockBroker) Port() int32 {
return b.port
}
// Addr returns the broker connection string in the form "<address>:<port>".
func (b *MockBroker) Addr() string {
return b.listener.Addr().String()
}
// Close terminates the broker blocking until it stops internal goroutines and
// releases all resources.
func (b *MockBroker) Close() {
close(b.expectations)
if len(b.expectations) > 0 {
buf := bytes.NewBufferString(fmt.Sprintf("mockbroker/%d: not all expectations were satisfied! Still waiting on:\n", b.BrokerID()))
for e := range b.expectations {
_, _ = buf.WriteString(spew.Sdump(e))
}
b.t.Error(buf.String())
}
close(b.closing)
<-b.stopper
}
// setHandler sets the specified function as the request handler. Whenever
// a mock broker reads a request from the wire it passes the request to the
// function and sends back whatever the handler function returns.
func (b *MockBroker) setHandler(handler requestHandlerFunc) {
b.lock.Lock()
b.handler = handler
b.lock.Unlock()
}
func (b *MockBroker) serverLoop() {
defer close(b.stopper)
var err error
var conn net.Conn
go func() {
<-b.closing
err := b.listener.Close()
if err != nil {
b.t.Error(err)
}
}()
wg := &sync.WaitGroup{}
i := 0
for conn, err = b.listener.Accept(); err == nil; conn, err = b.listener.Accept() {
wg.Add(1)
go b.handleRequests(conn, i, wg)
i++
}
wg.Wait()
Logger.Printf("*** mockbroker/%d: listener closed, err=%v", b.BrokerID(), err)
}
func (b *MockBroker) handleRequests(conn net.Conn, idx int, wg *sync.WaitGroup) {
defer wg.Done()
defer func() {
_ = conn.Close()
}()
Logger.Printf("*** mockbroker/%d/%d: connection opened", b.BrokerID(), idx)
var err error
abort := make(chan none)
defer close(abort)
go func() {
select {
case <-b.closing:
_ = conn.Close()
case <-abort:
}
}()
resHeader := make([]byte, 8)
for {
req, bytesRead, err := decodeRequest(conn)
if err != nil {
Logger.Printf("*** mockbroker/%d/%d: invalid request: err=%+v, %+v", b.brokerID, idx, err, spew.Sdump(req))
b.serverError(err)
break
}
if b.latency > 0 {
time.Sleep(b.latency)
}
b.lock.Lock()
res := b.handler(req)
b.history = append(b.history, RequestResponse{req.body, res})
b.lock.Unlock()
if res == nil {
Logger.Printf("*** mockbroker/%d/%d: ignored %v", b.brokerID, idx, spew.Sdump(req))
continue
}
Logger.Printf("*** mockbroker/%d/%d: served %v -> %v", b.brokerID, idx, req, res)
encodedRes, err := encode(res, nil)
if err != nil {
b.serverError(err)
break
}
if len(encodedRes) == 0 {
b.lock.Lock()
if b.notifier != nil {
b.notifier(bytesRead, 0)
}
b.lock.Unlock()
continue
}
binary.BigEndian.PutUint32(resHeader, uint32(len(encodedRes)+4))
binary.BigEndian.PutUint32(resHeader[4:], uint32(req.correlationID))
if _, err = conn.Write(resHeader); err != nil {
b.serverError(err)
break
}
if _, err = conn.Write(encodedRes); err != nil {
b.serverError(err)
break
}
b.lock.Lock()
if b.notifier != nil {
b.notifier(bytesRead, len(resHeader)+len(encodedRes))
}
b.lock.Unlock()
}
Logger.Printf("*** mockbroker/%d/%d: connection closed, err=%v", b.BrokerID(), idx, err)
}
func (b *MockBroker) defaultRequestHandler(req *request) (res encoder) {
select {
case res, ok := <-b.expectations:
if !ok {
return nil
}
return res
case <-time.After(expectationTimeout):
return nil
}
}
func (b *MockBroker) serverError(err error) {
isConnectionClosedError := false
if _, ok := err.(*net.OpError); ok {
isConnectionClosedError = true
} else if err == io.EOF {
isConnectionClosedError = true
} else if err.Error() == "use of closed network connection" {
isConnectionClosedError = true
}
if isConnectionClosedError {
return
}
b.t.Errorf(err.Error())
}
// NewMockBroker launches a fake Kafka broker. It takes a TestReporter as provided by the
// test framework and a channel of responses to use. If an error occurs it is
// simply logged to the TestReporter and the broker exits.
func NewMockBroker(t TestReporter, brokerID int32) *MockBroker {
return NewMockBrokerAddr(t, brokerID, "localhost:0")
}
// NewMockBrokerAddr behaves like newMockBroker but listens on the address you give
// it rather than just some ephemeral port.
func NewMockBrokerAddr(t TestReporter, brokerID int32, addr string) *MockBroker {
var err error
broker := &MockBroker{
closing: make(chan none),
stopper: make(chan none),
t: t,
brokerID: brokerID,
expectations: make(chan encoder, 512),
}
broker.handler = broker.defaultRequestHandler
broker.listener, err = net.Listen("tcp", addr)
if err != nil {
t.Fatal(err)
}
Logger.Printf("*** mockbroker/%d listening on %s\n", brokerID, broker.listener.Addr().String())
_, portStr, err := net.SplitHostPort(broker.listener.Addr().String())
if err != nil {
t.Fatal(err)
}
tmp, err := strconv.ParseInt(portStr, 10, 32)
if err != nil {
t.Fatal(err)
}
broker.port = int32(tmp)
go broker.serverLoop()
return broker
}
func (b *MockBroker) Returns(e encoder) {
b.expectations <- e
}

469
vendor/github.com/Shopify/sarama/mockresponses.go generated vendored Normal file
View File

@ -0,0 +1,469 @@
package sarama
import (
"fmt"
)
// TestReporter has methods matching go's testing.T to avoid importing
// `testing` in the main part of the library.
type TestReporter interface {
Error(...interface{})
Errorf(string, ...interface{})
Fatal(...interface{})
Fatalf(string, ...interface{})
}
// MockResponse is a response builder interface it defines one method that
// allows generating a response based on a request body. MockResponses are used
// to program behavior of MockBroker in tests.
type MockResponse interface {
For(reqBody versionedDecoder) (res encoder)
}
// MockWrapper is a mock response builder that returns a particular concrete
// response regardless of the actual request passed to the `For` method.
type MockWrapper struct {
res encoder
}
func (mw *MockWrapper) For(reqBody versionedDecoder) (res encoder) {
return mw.res
}
func NewMockWrapper(res encoder) *MockWrapper {
return &MockWrapper{res: res}
}
// MockSequence is a mock response builder that is created from a sequence of
// concrete responses. Every time when a `MockBroker` calls its `For` method
// the next response from the sequence is returned. When the end of the
// sequence is reached the last element from the sequence is returned.
type MockSequence struct {
responses []MockResponse
}
func NewMockSequence(responses ...interface{}) *MockSequence {
ms := &MockSequence{}
ms.responses = make([]MockResponse, len(responses))
for i, res := range responses {
switch res := res.(type) {
case MockResponse:
ms.responses[i] = res
case encoder:
ms.responses[i] = NewMockWrapper(res)
default:
panic(fmt.Sprintf("Unexpected response type: %T", res))
}
}
return ms
}
func (mc *MockSequence) For(reqBody versionedDecoder) (res encoder) {
res = mc.responses[0].For(reqBody)
if len(mc.responses) > 1 {
mc.responses = mc.responses[1:]
}
return res
}
// MockMetadataResponse is a `MetadataResponse` builder.
type MockMetadataResponse struct {
leaders map[string]map[int32]int32
brokers map[string]int32
t TestReporter
}
func NewMockMetadataResponse(t TestReporter) *MockMetadataResponse {
return &MockMetadataResponse{
leaders: make(map[string]map[int32]int32),
brokers: make(map[string]int32),
t: t,
}
}
func (mmr *MockMetadataResponse) SetLeader(topic string, partition, brokerID int32) *MockMetadataResponse {
partitions := mmr.leaders[topic]
if partitions == nil {
partitions = make(map[int32]int32)
mmr.leaders[topic] = partitions
}
partitions[partition] = brokerID
return mmr
}
func (mmr *MockMetadataResponse) SetBroker(addr string, brokerID int32) *MockMetadataResponse {
mmr.brokers[addr] = brokerID
return mmr
}
func (mmr *MockMetadataResponse) For(reqBody versionedDecoder) encoder {
metadataRequest := reqBody.(*MetadataRequest)
metadataResponse := &MetadataResponse{}
for addr, brokerID := range mmr.brokers {
metadataResponse.AddBroker(addr, brokerID)
}
if len(metadataRequest.Topics) == 0 {
for topic, partitions := range mmr.leaders {
for partition, brokerID := range partitions {
metadataResponse.AddTopicPartition(topic, partition, brokerID, nil, nil, ErrNoError)
}
}
return metadataResponse
}
for _, topic := range metadataRequest.Topics {
for partition, brokerID := range mmr.leaders[topic] {
metadataResponse.AddTopicPartition(topic, partition, brokerID, nil, nil, ErrNoError)
}
}
return metadataResponse
}
// MockOffsetResponse is an `OffsetResponse` builder.
type MockOffsetResponse struct {
offsets map[string]map[int32]map[int64]int64
t TestReporter
version int16
}
func NewMockOffsetResponse(t TestReporter) *MockOffsetResponse {
return &MockOffsetResponse{
offsets: make(map[string]map[int32]map[int64]int64),
t: t,
}
}
func (mor *MockOffsetResponse) SetVersion(version int16) *MockOffsetResponse {
mor.version = version
return mor
}
func (mor *MockOffsetResponse) SetOffset(topic string, partition int32, time, offset int64) *MockOffsetResponse {
partitions := mor.offsets[topic]
if partitions == nil {
partitions = make(map[int32]map[int64]int64)
mor.offsets[topic] = partitions
}
times := partitions[partition]
if times == nil {
times = make(map[int64]int64)
partitions[partition] = times
}
times[time] = offset
return mor
}
func (mor *MockOffsetResponse) For(reqBody versionedDecoder) encoder {
offsetRequest := reqBody.(*OffsetRequest)
offsetResponse := &OffsetResponse{Version: mor.version}
for topic, partitions := range offsetRequest.blocks {
for partition, block := range partitions {
offset := mor.getOffset(topic, partition, block.time)
offsetResponse.AddTopicPartition(topic, partition, offset)
}
}
return offsetResponse
}
func (mor *MockOffsetResponse) getOffset(topic string, partition int32, time int64) int64 {
partitions := mor.offsets[topic]
if partitions == nil {
mor.t.Errorf("missing topic: %s", topic)
}
times := partitions[partition]
if times == nil {
mor.t.Errorf("missing partition: %d", partition)
}
offset, ok := times[time]
if !ok {
mor.t.Errorf("missing time: %d", time)
}
return offset
}
// MockFetchResponse is a `FetchResponse` builder.
type MockFetchResponse struct {
messages map[string]map[int32]map[int64]Encoder
highWaterMarks map[string]map[int32]int64
t TestReporter
batchSize int
version int16
}
func NewMockFetchResponse(t TestReporter, batchSize int) *MockFetchResponse {
return &MockFetchResponse{
messages: make(map[string]map[int32]map[int64]Encoder),
highWaterMarks: make(map[string]map[int32]int64),
t: t,
batchSize: batchSize,
}
}
func (mfr *MockFetchResponse) SetVersion(version int16) *MockFetchResponse {
mfr.version = version
return mfr
}
func (mfr *MockFetchResponse) SetMessage(topic string, partition int32, offset int64, msg Encoder) *MockFetchResponse {
partitions := mfr.messages[topic]
if partitions == nil {
partitions = make(map[int32]map[int64]Encoder)
mfr.messages[topic] = partitions
}
messages := partitions[partition]
if messages == nil {
messages = make(map[int64]Encoder)
partitions[partition] = messages
}
messages[offset] = msg
return mfr
}
func (mfr *MockFetchResponse) SetHighWaterMark(topic string, partition int32, offset int64) *MockFetchResponse {
partitions := mfr.highWaterMarks[topic]
if partitions == nil {
partitions = make(map[int32]int64)
mfr.highWaterMarks[topic] = partitions
}
partitions[partition] = offset
return mfr
}
func (mfr *MockFetchResponse) For(reqBody versionedDecoder) encoder {
fetchRequest := reqBody.(*FetchRequest)
res := &FetchResponse{
Version: mfr.version,
}
for topic, partitions := range fetchRequest.blocks {
for partition, block := range partitions {
initialOffset := block.fetchOffset
offset := initialOffset
maxOffset := initialOffset + int64(mfr.getMessageCount(topic, partition))
for i := 0; i < mfr.batchSize && offset < maxOffset; {
msg := mfr.getMessage(topic, partition, offset)
if msg != nil {
res.AddMessage(topic, partition, nil, msg, offset)
i++
}
offset++
}
fb := res.GetBlock(topic, partition)
if fb == nil {
res.AddError(topic, partition, ErrNoError)
fb = res.GetBlock(topic, partition)
}
fb.HighWaterMarkOffset = mfr.getHighWaterMark(topic, partition)
}
}
return res
}
func (mfr *MockFetchResponse) getMessage(topic string, partition int32, offset int64) Encoder {
partitions := mfr.messages[topic]
if partitions == nil {
return nil
}
messages := partitions[partition]
if messages == nil {
return nil
}
return messages[offset]
}
func (mfr *MockFetchResponse) getMessageCount(topic string, partition int32) int {
partitions := mfr.messages[topic]
if partitions == nil {
return 0
}
messages := partitions[partition]
if messages == nil {
return 0
}
return len(messages)
}
func (mfr *MockFetchResponse) getHighWaterMark(topic string, partition int32) int64 {
partitions := mfr.highWaterMarks[topic]
if partitions == nil {
return 0
}
return partitions[partition]
}
// MockConsumerMetadataResponse is a `ConsumerMetadataResponse` builder.
type MockConsumerMetadataResponse struct {
coordinators map[string]interface{}
t TestReporter
}
func NewMockConsumerMetadataResponse(t TestReporter) *MockConsumerMetadataResponse {
return &MockConsumerMetadataResponse{
coordinators: make(map[string]interface{}),
t: t,
}
}
func (mr *MockConsumerMetadataResponse) SetCoordinator(group string, broker *MockBroker) *MockConsumerMetadataResponse {
mr.coordinators[group] = broker
return mr
}
func (mr *MockConsumerMetadataResponse) SetError(group string, kerror KError) *MockConsumerMetadataResponse {
mr.coordinators[group] = kerror
return mr
}
func (mr *MockConsumerMetadataResponse) For(reqBody versionedDecoder) encoder {
req := reqBody.(*ConsumerMetadataRequest)
group := req.ConsumerGroup
res := &ConsumerMetadataResponse{}
v := mr.coordinators[group]
switch v := v.(type) {
case *MockBroker:
res.Coordinator = &Broker{id: v.BrokerID(), addr: v.Addr()}
case KError:
res.Err = v
}
return res
}
// MockOffsetCommitResponse is a `OffsetCommitResponse` builder.
type MockOffsetCommitResponse struct {
errors map[string]map[string]map[int32]KError
t TestReporter
}
func NewMockOffsetCommitResponse(t TestReporter) *MockOffsetCommitResponse {
return &MockOffsetCommitResponse{t: t}
}
func (mr *MockOffsetCommitResponse) SetError(group, topic string, partition int32, kerror KError) *MockOffsetCommitResponse {
if mr.errors == nil {
mr.errors = make(map[string]map[string]map[int32]KError)
}
topics := mr.errors[group]
if topics == nil {
topics = make(map[string]map[int32]KError)
mr.errors[group] = topics
}
partitions := topics[topic]
if partitions == nil {
partitions = make(map[int32]KError)
topics[topic] = partitions
}
partitions[partition] = kerror
return mr
}
func (mr *MockOffsetCommitResponse) For(reqBody versionedDecoder) encoder {
req := reqBody.(*OffsetCommitRequest)
group := req.ConsumerGroup
res := &OffsetCommitResponse{}
for topic, partitions := range req.blocks {
for partition := range partitions {
res.AddError(topic, partition, mr.getError(group, topic, partition))
}
}
return res
}
func (mr *MockOffsetCommitResponse) getError(group, topic string, partition int32) KError {
topics := mr.errors[group]
if topics == nil {
return ErrNoError
}
partitions := topics[topic]
if partitions == nil {
return ErrNoError
}
kerror, ok := partitions[partition]
if !ok {
return ErrNoError
}
return kerror
}
// MockProduceResponse is a `ProduceResponse` builder.
type MockProduceResponse struct {
errors map[string]map[int32]KError
t TestReporter
}
func NewMockProduceResponse(t TestReporter) *MockProduceResponse {
return &MockProduceResponse{t: t}
}
func (mr *MockProduceResponse) SetError(topic string, partition int32, kerror KError) *MockProduceResponse {
if mr.errors == nil {
mr.errors = make(map[string]map[int32]KError)
}
partitions := mr.errors[topic]
if partitions == nil {
partitions = make(map[int32]KError)
mr.errors[topic] = partitions
}
partitions[partition] = kerror
return mr
}
func (mr *MockProduceResponse) For(reqBody versionedDecoder) encoder {
req := reqBody.(*ProduceRequest)
res := &ProduceResponse{}
for topic, partitions := range req.records {
for partition := range partitions {
res.AddTopicPartition(topic, partition, mr.getError(topic, partition))
}
}
return res
}
func (mr *MockProduceResponse) getError(topic string, partition int32) KError {
partitions := mr.errors[topic]
if partitions == nil {
return ErrNoError
}
kerror, ok := partitions[partition]
if !ok {
return ErrNoError
}
return kerror
}
// MockOffsetFetchResponse is a `OffsetFetchResponse` builder.
type MockOffsetFetchResponse struct {
offsets map[string]map[string]map[int32]*OffsetFetchResponseBlock
t TestReporter
}
func NewMockOffsetFetchResponse(t TestReporter) *MockOffsetFetchResponse {
return &MockOffsetFetchResponse{t: t}
}
func (mr *MockOffsetFetchResponse) SetOffset(group, topic string, partition int32, offset int64, metadata string, kerror KError) *MockOffsetFetchResponse {
if mr.offsets == nil {
mr.offsets = make(map[string]map[string]map[int32]*OffsetFetchResponseBlock)
}
topics := mr.offsets[group]
if topics == nil {
topics = make(map[string]map[int32]*OffsetFetchResponseBlock)
mr.offsets[group] = topics
}
partitions := topics[topic]
if partitions == nil {
partitions = make(map[int32]*OffsetFetchResponseBlock)
topics[topic] = partitions
}
partitions[partition] = &OffsetFetchResponseBlock{offset, metadata, kerror}
return mr
}
func (mr *MockOffsetFetchResponse) For(reqBody versionedDecoder) encoder {
req := reqBody.(*OffsetFetchRequest)
group := req.ConsumerGroup
res := &OffsetFetchResponse{}
for topic, partitions := range mr.offsets[group] {
for partition, block := range partitions {
res.AddBlock(topic, partition, block)
}
}
return res
}

View File

@ -0,0 +1,190 @@
package sarama
// ReceiveTime is a special value for the timestamp field of Offset Commit Requests which
// tells the broker to set the timestamp to the time at which the request was received.
// The timestamp is only used if message version 1 is used, which requires kafka 0.8.2.
const ReceiveTime int64 = -1
// GroupGenerationUndefined is a special value for the group generation field of
// Offset Commit Requests that should be used when a consumer group does not rely
// on Kafka for partition management.
const GroupGenerationUndefined = -1
type offsetCommitRequestBlock struct {
offset int64
timestamp int64
metadata string
}
func (b *offsetCommitRequestBlock) encode(pe packetEncoder, version int16) error {
pe.putInt64(b.offset)
if version == 1 {
pe.putInt64(b.timestamp)
} else if b.timestamp != 0 {
Logger.Println("Non-zero timestamp specified for OffsetCommitRequest not v1, it will be ignored")
}
return pe.putString(b.metadata)
}
func (b *offsetCommitRequestBlock) decode(pd packetDecoder, version int16) (err error) {
if b.offset, err = pd.getInt64(); err != nil {
return err
}
if version == 1 {
if b.timestamp, err = pd.getInt64(); err != nil {
return err
}
}
b.metadata, err = pd.getString()
return err
}
type OffsetCommitRequest struct {
ConsumerGroup string
ConsumerGroupGeneration int32 // v1 or later
ConsumerID string // v1 or later
RetentionTime int64 // v2 or later
// Version can be:
// - 0 (kafka 0.8.1 and later)
// - 1 (kafka 0.8.2 and later)
// - 2 (kafka 0.9.0 and later)
Version int16
blocks map[string]map[int32]*offsetCommitRequestBlock
}
func (r *OffsetCommitRequest) encode(pe packetEncoder) error {
if r.Version < 0 || r.Version > 2 {
return PacketEncodingError{"invalid or unsupported OffsetCommitRequest version field"}
}
if err := pe.putString(r.ConsumerGroup); err != nil {
return err
}
if r.Version >= 1 {
pe.putInt32(r.ConsumerGroupGeneration)
if err := pe.putString(r.ConsumerID); err != nil {
return err
}
} else {
if r.ConsumerGroupGeneration != 0 {
Logger.Println("Non-zero ConsumerGroupGeneration specified for OffsetCommitRequest v0, it will be ignored")
}
if r.ConsumerID != "" {
Logger.Println("Non-empty ConsumerID specified for OffsetCommitRequest v0, it will be ignored")
}
}
if r.Version >= 2 {
pe.putInt64(r.RetentionTime)
} else if r.RetentionTime != 0 {
Logger.Println("Non-zero RetentionTime specified for OffsetCommitRequest version <2, it will be ignored")
}
if err := pe.putArrayLength(len(r.blocks)); err != nil {
return err
}
for topic, partitions := range r.blocks {
if err := pe.putString(topic); err != nil {
return err
}
if err := pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err := block.encode(pe, r.Version); err != nil {
return err
}
}
}
return nil
}
func (r *OffsetCommitRequest) decode(pd packetDecoder, version int16) (err error) {
r.Version = version
if r.ConsumerGroup, err = pd.getString(); err != nil {
return err
}
if r.Version >= 1 {
if r.ConsumerGroupGeneration, err = pd.getInt32(); err != nil {
return err
}
if r.ConsumerID, err = pd.getString(); err != nil {
return err
}
}
if r.Version >= 2 {
if r.RetentionTime, err = pd.getInt64(); err != nil {
return err
}
}
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
r.blocks = make(map[string]map[int32]*offsetCommitRequestBlock)
for i := 0; i < topicCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
r.blocks[topic] = make(map[int32]*offsetCommitRequestBlock)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
block := &offsetCommitRequestBlock{}
if err := block.decode(pd, r.Version); err != nil {
return err
}
r.blocks[topic][partition] = block
}
}
return nil
}
func (r *OffsetCommitRequest) key() int16 {
return 8
}
func (r *OffsetCommitRequest) version() int16 {
return r.Version
}
func (r *OffsetCommitRequest) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_8_2_0
case 2:
return V0_9_0_0
default:
return minVersion
}
}
func (r *OffsetCommitRequest) AddBlock(topic string, partitionID int32, offset int64, timestamp int64, metadata string) {
if r.blocks == nil {
r.blocks = make(map[string]map[int32]*offsetCommitRequestBlock)
}
if r.blocks[topic] == nil {
r.blocks[topic] = make(map[int32]*offsetCommitRequestBlock)
}
r.blocks[topic][partitionID] = &offsetCommitRequestBlock{offset, timestamp, metadata}
}

View File

@ -0,0 +1,85 @@
package sarama
type OffsetCommitResponse struct {
Errors map[string]map[int32]KError
}
func (r *OffsetCommitResponse) AddError(topic string, partition int32, kerror KError) {
if r.Errors == nil {
r.Errors = make(map[string]map[int32]KError)
}
partitions := r.Errors[topic]
if partitions == nil {
partitions = make(map[int32]KError)
r.Errors[topic] = partitions
}
partitions[partition] = kerror
}
func (r *OffsetCommitResponse) encode(pe packetEncoder) error {
if err := pe.putArrayLength(len(r.Errors)); err != nil {
return err
}
for topic, partitions := range r.Errors {
if err := pe.putString(topic); err != nil {
return err
}
if err := pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, kerror := range partitions {
pe.putInt32(partition)
pe.putInt16(int16(kerror))
}
}
return nil
}
func (r *OffsetCommitResponse) decode(pd packetDecoder, version int16) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil || numTopics == 0 {
return err
}
r.Errors = make(map[string]map[int32]KError, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numErrors, err := pd.getArrayLength()
if err != nil {
return err
}
r.Errors[name] = make(map[int32]KError, numErrors)
for j := 0; j < numErrors; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
tmp, err := pd.getInt16()
if err != nil {
return err
}
r.Errors[name][id] = KError(tmp)
}
}
return nil
}
func (r *OffsetCommitResponse) key() int16 {
return 8
}
func (r *OffsetCommitResponse) version() int16 {
return 0
}
func (r *OffsetCommitResponse) requiredVersion() KafkaVersion {
return minVersion
}

View File

@ -0,0 +1,81 @@
package sarama
type OffsetFetchRequest struct {
ConsumerGroup string
Version int16
partitions map[string][]int32
}
func (r *OffsetFetchRequest) encode(pe packetEncoder) (err error) {
if r.Version < 0 || r.Version > 1 {
return PacketEncodingError{"invalid or unsupported OffsetFetchRequest version field"}
}
if err = pe.putString(r.ConsumerGroup); err != nil {
return err
}
if err = pe.putArrayLength(len(r.partitions)); err != nil {
return err
}
for topic, partitions := range r.partitions {
if err = pe.putString(topic); err != nil {
return err
}
if err = pe.putInt32Array(partitions); err != nil {
return err
}
}
return nil
}
func (r *OffsetFetchRequest) decode(pd packetDecoder, version int16) (err error) {
r.Version = version
if r.ConsumerGroup, err = pd.getString(); err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
if partitionCount == 0 {
return nil
}
r.partitions = make(map[string][]int32)
for i := 0; i < partitionCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitions, err := pd.getInt32Array()
if err != nil {
return err
}
r.partitions[topic] = partitions
}
return nil
}
func (r *OffsetFetchRequest) key() int16 {
return 9
}
func (r *OffsetFetchRequest) version() int16 {
return r.Version
}
func (r *OffsetFetchRequest) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_8_2_0
default:
return minVersion
}
}
func (r *OffsetFetchRequest) AddPartition(topic string, partitionID int32) {
if r.partitions == nil {
r.partitions = make(map[string][]int32)
}
r.partitions[topic] = append(r.partitions[topic], partitionID)
}

View File

@ -0,0 +1,143 @@
package sarama
type OffsetFetchResponseBlock struct {
Offset int64
Metadata string
Err KError
}
func (b *OffsetFetchResponseBlock) decode(pd packetDecoder) (err error) {
b.Offset, err = pd.getInt64()
if err != nil {
return err
}
b.Metadata, err = pd.getString()
if err != nil {
return err
}
tmp, err := pd.getInt16()
if err != nil {
return err
}
b.Err = KError(tmp)
return nil
}
func (b *OffsetFetchResponseBlock) encode(pe packetEncoder) (err error) {
pe.putInt64(b.Offset)
err = pe.putString(b.Metadata)
if err != nil {
return err
}
pe.putInt16(int16(b.Err))
return nil
}
type OffsetFetchResponse struct {
Blocks map[string]map[int32]*OffsetFetchResponseBlock
}
func (r *OffsetFetchResponse) encode(pe packetEncoder) error {
if err := pe.putArrayLength(len(r.Blocks)); err != nil {
return err
}
for topic, partitions := range r.Blocks {
if err := pe.putString(topic); err != nil {
return err
}
if err := pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err := block.encode(pe); err != nil {
return err
}
}
}
return nil
}
func (r *OffsetFetchResponse) decode(pd packetDecoder, version int16) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil || numTopics == 0 {
return err
}
r.Blocks = make(map[string]map[int32]*OffsetFetchResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
if numBlocks == 0 {
r.Blocks[name] = nil
continue
}
r.Blocks[name] = make(map[int32]*OffsetFetchResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(OffsetFetchResponseBlock)
err = block.decode(pd)
if err != nil {
return err
}
r.Blocks[name][id] = block
}
}
return nil
}
func (r *OffsetFetchResponse) key() int16 {
return 9
}
func (r *OffsetFetchResponse) version() int16 {
return 0
}
func (r *OffsetFetchResponse) requiredVersion() KafkaVersion {
return minVersion
}
func (r *OffsetFetchResponse) GetBlock(topic string, partition int32) *OffsetFetchResponseBlock {
if r.Blocks == nil {
return nil
}
if r.Blocks[topic] == nil {
return nil
}
return r.Blocks[topic][partition]
}
func (r *OffsetFetchResponse) AddBlock(topic string, partition int32, block *OffsetFetchResponseBlock) {
if r.Blocks == nil {
r.Blocks = make(map[string]map[int32]*OffsetFetchResponseBlock)
}
partitions := r.Blocks[topic]
if partitions == nil {
partitions = make(map[int32]*OffsetFetchResponseBlock)
r.Blocks[topic] = partitions
}
partitions[partition] = block
}

560
vendor/github.com/Shopify/sarama/offset_manager.go generated vendored Normal file
View File

@ -0,0 +1,560 @@
package sarama
import (
"sync"
"time"
)
// Offset Manager
// OffsetManager uses Kafka to store and fetch consumed partition offsets.
type OffsetManager interface {
// ManagePartition creates a PartitionOffsetManager on the given topic/partition.
// It will return an error if this OffsetManager is already managing the given
// topic/partition.
ManagePartition(topic string, partition int32) (PartitionOffsetManager, error)
// Close stops the OffsetManager from managing offsets. It is required to call
// this function before an OffsetManager object passes out of scope, as it
// will otherwise leak memory. You must call this after all the
// PartitionOffsetManagers are closed.
Close() error
}
type offsetManager struct {
client Client
conf *Config
group string
lock sync.Mutex
poms map[string]map[int32]*partitionOffsetManager
boms map[*Broker]*brokerOffsetManager
}
// NewOffsetManagerFromClient creates a new OffsetManager from the given client.
// It is still necessary to call Close() on the underlying client when finished with the partition manager.
func NewOffsetManagerFromClient(group string, client Client) (OffsetManager, error) {
// Check that we are not dealing with a closed Client before processing any other arguments
if client.Closed() {
return nil, ErrClosedClient
}
om := &offsetManager{
client: client,
conf: client.Config(),
group: group,
poms: make(map[string]map[int32]*partitionOffsetManager),
boms: make(map[*Broker]*brokerOffsetManager),
}
return om, nil
}
func (om *offsetManager) ManagePartition(topic string, partition int32) (PartitionOffsetManager, error) {
pom, err := om.newPartitionOffsetManager(topic, partition)
if err != nil {
return nil, err
}
om.lock.Lock()
defer om.lock.Unlock()
topicManagers := om.poms[topic]
if topicManagers == nil {
topicManagers = make(map[int32]*partitionOffsetManager)
om.poms[topic] = topicManagers
}
if topicManagers[partition] != nil {
return nil, ConfigurationError("That topic/partition is already being managed")
}
topicManagers[partition] = pom
return pom, nil
}
func (om *offsetManager) Close() error {
return nil
}
func (om *offsetManager) refBrokerOffsetManager(broker *Broker) *brokerOffsetManager {
om.lock.Lock()
defer om.lock.Unlock()
bom := om.boms[broker]
if bom == nil {
bom = om.newBrokerOffsetManager(broker)
om.boms[broker] = bom
}
bom.refs++
return bom
}
func (om *offsetManager) unrefBrokerOffsetManager(bom *brokerOffsetManager) {
om.lock.Lock()
defer om.lock.Unlock()
bom.refs--
if bom.refs == 0 {
close(bom.updateSubscriptions)
if om.boms[bom.broker] == bom {
delete(om.boms, bom.broker)
}
}
}
func (om *offsetManager) abandonBroker(bom *brokerOffsetManager) {
om.lock.Lock()
defer om.lock.Unlock()
delete(om.boms, bom.broker)
}
func (om *offsetManager) abandonPartitionOffsetManager(pom *partitionOffsetManager) {
om.lock.Lock()
defer om.lock.Unlock()
delete(om.poms[pom.topic], pom.partition)
if len(om.poms[pom.topic]) == 0 {
delete(om.poms, pom.topic)
}
}
// Partition Offset Manager
// PartitionOffsetManager uses Kafka to store and fetch consumed partition offsets. You MUST call Close()
// on a partition offset manager to avoid leaks, it will not be garbage-collected automatically when it passes
// out of scope.
type PartitionOffsetManager interface {
// NextOffset returns the next offset that should be consumed for the managed
// partition, accompanied by metadata which can be used to reconstruct the state
// of the partition consumer when it resumes. NextOffset() will return
// `config.Consumer.Offsets.Initial` and an empty metadata string if no offset
// was committed for this partition yet.
NextOffset() (int64, string)
// MarkOffset marks the provided offset, alongside a metadata string
// that represents the state of the partition consumer at that point in time. The
// metadata string can be used by another consumer to restore that state, so it
// can resume consumption.
//
// To follow upstream conventions, you are expected to mark the offset of the
// next message to read, not the last message read. Thus, when calling `MarkOffset`
// you should typically add one to the offset of the last consumed message.
//
// Note: calling MarkOffset does not necessarily commit the offset to the backend
// store immediately for efficiency reasons, and it may never be committed if
// your application crashes. This means that you may end up processing the same
// message twice, and your processing should ideally be idempotent.
MarkOffset(offset int64, metadata string)
// ResetOffset resets to the provided offset, alongside a metadata string that
// represents the state of the partition consumer at that point in time. Reset
// acts as a counterpart to MarkOffset, the difference being that it allows to
// reset an offset to an earlier or smaller value, where MarkOffset only
// allows incrementing the offset. cf MarkOffset for more details.
ResetOffset(offset int64, metadata string)
// Errors returns a read channel of errors that occur during offset management, if
// enabled. By default, errors are logged and not returned over this channel. If
// you want to implement any custom error handling, set your config's
// Consumer.Return.Errors setting to true, and read from this channel.
Errors() <-chan *ConsumerError
// AsyncClose initiates a shutdown of the PartitionOffsetManager. This method will
// return immediately, after which you should wait until the 'errors' channel has
// been drained and closed. It is required to call this function, or Close before
// a consumer object passes out of scope, as it will otherwise leak memory. You
// must call this before calling Close on the underlying client.
AsyncClose()
// Close stops the PartitionOffsetManager from managing offsets. It is required to
// call this function (or AsyncClose) before a PartitionOffsetManager object
// passes out of scope, as it will otherwise leak memory. You must call this
// before calling Close on the underlying client.
Close() error
}
type partitionOffsetManager struct {
parent *offsetManager
topic string
partition int32
lock sync.Mutex
offset int64
metadata string
dirty bool
clean sync.Cond
broker *brokerOffsetManager
errors chan *ConsumerError
rebalance chan none
dying chan none
}
func (om *offsetManager) newPartitionOffsetManager(topic string, partition int32) (*partitionOffsetManager, error) {
pom := &partitionOffsetManager{
parent: om,
topic: topic,
partition: partition,
errors: make(chan *ConsumerError, om.conf.ChannelBufferSize),
rebalance: make(chan none, 1),
dying: make(chan none),
}
pom.clean.L = &pom.lock
if err := pom.selectBroker(); err != nil {
return nil, err
}
if err := pom.fetchInitialOffset(om.conf.Metadata.Retry.Max); err != nil {
return nil, err
}
pom.broker.updateSubscriptions <- pom
go withRecover(pom.mainLoop)
return pom, nil
}
func (pom *partitionOffsetManager) mainLoop() {
for {
select {
case <-pom.rebalance:
if err := pom.selectBroker(); err != nil {
pom.handleError(err)
pom.rebalance <- none{}
} else {
pom.broker.updateSubscriptions <- pom
}
case <-pom.dying:
if pom.broker != nil {
select {
case <-pom.rebalance:
case pom.broker.updateSubscriptions <- pom:
}
pom.parent.unrefBrokerOffsetManager(pom.broker)
}
pom.parent.abandonPartitionOffsetManager(pom)
close(pom.errors)
return
}
}
}
func (pom *partitionOffsetManager) selectBroker() error {
if pom.broker != nil {
pom.parent.unrefBrokerOffsetManager(pom.broker)
pom.broker = nil
}
var broker *Broker
var err error
if err = pom.parent.client.RefreshCoordinator(pom.parent.group); err != nil {
return err
}
if broker, err = pom.parent.client.Coordinator(pom.parent.group); err != nil {
return err
}
pom.broker = pom.parent.refBrokerOffsetManager(broker)
return nil
}
func (pom *partitionOffsetManager) fetchInitialOffset(retries int) error {
request := new(OffsetFetchRequest)
request.Version = 1
request.ConsumerGroup = pom.parent.group
request.AddPartition(pom.topic, pom.partition)
response, err := pom.broker.broker.FetchOffset(request)
if err != nil {
return err
}
block := response.GetBlock(pom.topic, pom.partition)
if block == nil {
return ErrIncompleteResponse
}
switch block.Err {
case ErrNoError:
pom.offset = block.Offset
pom.metadata = block.Metadata
return nil
case ErrNotCoordinatorForConsumer:
if retries <= 0 {
return block.Err
}
if err := pom.selectBroker(); err != nil {
return err
}
return pom.fetchInitialOffset(retries - 1)
case ErrOffsetsLoadInProgress:
if retries <= 0 {
return block.Err
}
time.Sleep(pom.parent.conf.Metadata.Retry.Backoff)
return pom.fetchInitialOffset(retries - 1)
default:
return block.Err
}
}
func (pom *partitionOffsetManager) handleError(err error) {
cErr := &ConsumerError{
Topic: pom.topic,
Partition: pom.partition,
Err: err,
}
if pom.parent.conf.Consumer.Return.Errors {
pom.errors <- cErr
} else {
Logger.Println(cErr)
}
}
func (pom *partitionOffsetManager) Errors() <-chan *ConsumerError {
return pom.errors
}
func (pom *partitionOffsetManager) MarkOffset(offset int64, metadata string) {
pom.lock.Lock()
defer pom.lock.Unlock()
if offset > pom.offset {
pom.offset = offset
pom.metadata = metadata
pom.dirty = true
}
}
func (pom *partitionOffsetManager) ResetOffset(offset int64, metadata string) {
pom.lock.Lock()
defer pom.lock.Unlock()
if offset <= pom.offset {
pom.offset = offset
pom.metadata = metadata
pom.dirty = true
}
}
func (pom *partitionOffsetManager) updateCommitted(offset int64, metadata string) {
pom.lock.Lock()
defer pom.lock.Unlock()
if pom.offset == offset && pom.metadata == metadata {
pom.dirty = false
pom.clean.Signal()
}
}
func (pom *partitionOffsetManager) NextOffset() (int64, string) {
pom.lock.Lock()
defer pom.lock.Unlock()
if pom.offset >= 0 {
return pom.offset, pom.metadata
}
return pom.parent.conf.Consumer.Offsets.Initial, ""
}
func (pom *partitionOffsetManager) AsyncClose() {
go func() {
pom.lock.Lock()
defer pom.lock.Unlock()
for pom.dirty {
pom.clean.Wait()
}
close(pom.dying)
}()
}
func (pom *partitionOffsetManager) Close() error {
pom.AsyncClose()
var errors ConsumerErrors
for err := range pom.errors {
errors = append(errors, err)
}
if len(errors) > 0 {
return errors
}
return nil
}
// Broker Offset Manager
type brokerOffsetManager struct {
parent *offsetManager
broker *Broker
timer *time.Ticker
updateSubscriptions chan *partitionOffsetManager
subscriptions map[*partitionOffsetManager]none
refs int
}
func (om *offsetManager) newBrokerOffsetManager(broker *Broker) *brokerOffsetManager {
bom := &brokerOffsetManager{
parent: om,
broker: broker,
timer: time.NewTicker(om.conf.Consumer.Offsets.CommitInterval),
updateSubscriptions: make(chan *partitionOffsetManager),
subscriptions: make(map[*partitionOffsetManager]none),
}
go withRecover(bom.mainLoop)
return bom
}
func (bom *brokerOffsetManager) mainLoop() {
for {
select {
case <-bom.timer.C:
if len(bom.subscriptions) > 0 {
bom.flushToBroker()
}
case s, ok := <-bom.updateSubscriptions:
if !ok {
bom.timer.Stop()
return
}
if _, ok := bom.subscriptions[s]; ok {
delete(bom.subscriptions, s)
} else {
bom.subscriptions[s] = none{}
}
}
}
}
func (bom *brokerOffsetManager) flushToBroker() {
request := bom.constructRequest()
if request == nil {
return
}
response, err := bom.broker.CommitOffset(request)
if err != nil {
bom.abort(err)
return
}
for s := range bom.subscriptions {
if request.blocks[s.topic] == nil || request.blocks[s.topic][s.partition] == nil {
continue
}
var err KError
var ok bool
if response.Errors[s.topic] == nil {
s.handleError(ErrIncompleteResponse)
delete(bom.subscriptions, s)
s.rebalance <- none{}
continue
}
if err, ok = response.Errors[s.topic][s.partition]; !ok {
s.handleError(ErrIncompleteResponse)
delete(bom.subscriptions, s)
s.rebalance <- none{}
continue
}
switch err {
case ErrNoError:
block := request.blocks[s.topic][s.partition]
s.updateCommitted(block.offset, block.metadata)
case ErrNotLeaderForPartition, ErrLeaderNotAvailable,
ErrConsumerCoordinatorNotAvailable, ErrNotCoordinatorForConsumer:
// not a critical error, we just need to redispatch
delete(bom.subscriptions, s)
s.rebalance <- none{}
case ErrOffsetMetadataTooLarge, ErrInvalidCommitOffsetSize:
// nothing we can do about this, just tell the user and carry on
s.handleError(err)
case ErrOffsetsLoadInProgress:
// nothing wrong but we didn't commit, we'll get it next time round
break
case ErrUnknownTopicOrPartition:
// let the user know *and* try redispatching - if topic-auto-create is
// enabled, redispatching should trigger a metadata request and create the
// topic; if not then re-dispatching won't help, but we've let the user
// know and it shouldn't hurt either (see https://github.com/Shopify/sarama/issues/706)
fallthrough
default:
// dunno, tell the user and try redispatching
s.handleError(err)
delete(bom.subscriptions, s)
s.rebalance <- none{}
}
}
}
func (bom *brokerOffsetManager) constructRequest() *OffsetCommitRequest {
var r *OffsetCommitRequest
var perPartitionTimestamp int64
if bom.parent.conf.Consumer.Offsets.Retention == 0 {
perPartitionTimestamp = ReceiveTime
r = &OffsetCommitRequest{
Version: 1,
ConsumerGroup: bom.parent.group,
ConsumerGroupGeneration: GroupGenerationUndefined,
}
} else {
r = &OffsetCommitRequest{
Version: 2,
RetentionTime: int64(bom.parent.conf.Consumer.Offsets.Retention / time.Millisecond),
ConsumerGroup: bom.parent.group,
ConsumerGroupGeneration: GroupGenerationUndefined,
}
}
for s := range bom.subscriptions {
s.lock.Lock()
if s.dirty {
r.AddBlock(s.topic, s.partition, s.offset, perPartitionTimestamp, s.metadata)
}
s.lock.Unlock()
}
if len(r.blocks) > 0 {
return r
}
return nil
}
func (bom *brokerOffsetManager) abort(err error) {
_ = bom.broker.Close() // we don't care about the error this might return, we already have one
bom.parent.abandonBroker(bom)
for pom := range bom.subscriptions {
pom.handleError(err)
pom.rebalance <- none{}
}
for s := range bom.updateSubscriptions {
if _, ok := bom.subscriptions[s]; !ok {
s.handleError(err)
s.rebalance <- none{}
}
}
bom.subscriptions = make(map[*partitionOffsetManager]none)
}

132
vendor/github.com/Shopify/sarama/offset_request.go generated vendored Normal file
View File

@ -0,0 +1,132 @@
package sarama
type offsetRequestBlock struct {
time int64
maxOffsets int32 // Only used in version 0
}
func (b *offsetRequestBlock) encode(pe packetEncoder, version int16) error {
pe.putInt64(int64(b.time))
if version == 0 {
pe.putInt32(b.maxOffsets)
}
return nil
}
func (b *offsetRequestBlock) decode(pd packetDecoder, version int16) (err error) {
if b.time, err = pd.getInt64(); err != nil {
return err
}
if version == 0 {
if b.maxOffsets, err = pd.getInt32(); err != nil {
return err
}
}
return nil
}
type OffsetRequest struct {
Version int16
blocks map[string]map[int32]*offsetRequestBlock
}
func (r *OffsetRequest) encode(pe packetEncoder) error {
pe.putInt32(-1) // replica ID is always -1 for clients
err := pe.putArrayLength(len(r.blocks))
if err != nil {
return err
}
for topic, partitions := range r.blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err = block.encode(pe, r.Version); err != nil {
return err
}
}
}
return nil
}
func (r *OffsetRequest) decode(pd packetDecoder, version int16) error {
r.Version = version
// Ignore replica ID
if _, err := pd.getInt32(); err != nil {
return err
}
blockCount, err := pd.getArrayLength()
if err != nil {
return err
}
if blockCount == 0 {
return nil
}
r.blocks = make(map[string]map[int32]*offsetRequestBlock)
for i := 0; i < blockCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
r.blocks[topic] = make(map[int32]*offsetRequestBlock)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
block := &offsetRequestBlock{}
if err := block.decode(pd, version); err != nil {
return err
}
r.blocks[topic][partition] = block
}
}
return nil
}
func (r *OffsetRequest) key() int16 {
return 2
}
func (r *OffsetRequest) version() int16 {
return r.Version
}
func (r *OffsetRequest) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_10_1_0
default:
return minVersion
}
}
func (r *OffsetRequest) AddBlock(topic string, partitionID int32, time int64, maxOffsets int32) {
if r.blocks == nil {
r.blocks = make(map[string]map[int32]*offsetRequestBlock)
}
if r.blocks[topic] == nil {
r.blocks[topic] = make(map[int32]*offsetRequestBlock)
}
tmp := new(offsetRequestBlock)
tmp.time = time
if r.Version == 0 {
tmp.maxOffsets = maxOffsets
}
r.blocks[topic][partitionID] = tmp
}

174
vendor/github.com/Shopify/sarama/offset_response.go generated vendored Normal file
View File

@ -0,0 +1,174 @@
package sarama
type OffsetResponseBlock struct {
Err KError
Offsets []int64 // Version 0
Offset int64 // Version 1
Timestamp int64 // Version 1
}
func (b *OffsetResponseBlock) decode(pd packetDecoder, version int16) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
b.Err = KError(tmp)
if version == 0 {
b.Offsets, err = pd.getInt64Array()
return err
}
b.Timestamp, err = pd.getInt64()
if err != nil {
return err
}
b.Offset, err = pd.getInt64()
if err != nil {
return err
}
// For backwards compatibility put the offset in the offsets array too
b.Offsets = []int64{b.Offset}
return nil
}
func (b *OffsetResponseBlock) encode(pe packetEncoder, version int16) (err error) {
pe.putInt16(int16(b.Err))
if version == 0 {
return pe.putInt64Array(b.Offsets)
}
pe.putInt64(b.Timestamp)
pe.putInt64(b.Offset)
return nil
}
type OffsetResponse struct {
Version int16
Blocks map[string]map[int32]*OffsetResponseBlock
}
func (r *OffsetResponse) decode(pd packetDecoder, version int16) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks = make(map[string]map[int32]*OffsetResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks[name] = make(map[int32]*OffsetResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(OffsetResponseBlock)
err = block.decode(pd, version)
if err != nil {
return err
}
r.Blocks[name][id] = block
}
}
return nil
}
func (r *OffsetResponse) GetBlock(topic string, partition int32) *OffsetResponseBlock {
if r.Blocks == nil {
return nil
}
if r.Blocks[topic] == nil {
return nil
}
return r.Blocks[topic][partition]
}
/*
// [0 0 0 1 ntopics
0 8 109 121 95 116 111 112 105 99 topic
0 0 0 1 npartitions
0 0 0 0 id
0 0
0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 1
0 8 109 121 95 116 111 112
105 99 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1] <nil>
*/
func (r *OffsetResponse) encode(pe packetEncoder) (err error) {
if err = pe.putArrayLength(len(r.Blocks)); err != nil {
return err
}
for topic, partitions := range r.Blocks {
if err = pe.putString(topic); err != nil {
return err
}
if err = pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err = block.encode(pe, r.version()); err != nil {
return err
}
}
}
return nil
}
func (r *OffsetResponse) key() int16 {
return 2
}
func (r *OffsetResponse) version() int16 {
return r.Version
}
func (r *OffsetResponse) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_10_1_0
default:
return minVersion
}
}
// testing API
func (r *OffsetResponse) AddTopicPartition(topic string, partition int32, offset int64) {
if r.Blocks == nil {
r.Blocks = make(map[string]map[int32]*OffsetResponseBlock)
}
byTopic, ok := r.Blocks[topic]
if !ok {
byTopic = make(map[int32]*OffsetResponseBlock)
r.Blocks[topic] = byTopic
}
byTopic[partition] = &OffsetResponseBlock{Offsets: []int64{offset}, Offset: offset}
}

59
vendor/github.com/Shopify/sarama/packet_decoder.go generated vendored Normal file
View File

@ -0,0 +1,59 @@
package sarama
// PacketDecoder is the interface providing helpers for reading with Kafka's encoding rules.
// Types implementing Decoder only need to worry about calling methods like GetString,
// not about how a string is represented in Kafka.
type packetDecoder interface {
// Primitives
getInt8() (int8, error)
getInt16() (int16, error)
getInt32() (int32, error)
getInt64() (int64, error)
getVarint() (int64, error)
getArrayLength() (int, error)
// Collections
getBytes() ([]byte, error)
getVarintBytes() ([]byte, error)
getRawBytes(length int) ([]byte, error)
getString() (string, error)
getNullableString() (*string, error)
getInt32Array() ([]int32, error)
getInt64Array() ([]int64, error)
getStringArray() ([]string, error)
// Subsets
remaining() int
getSubset(length int) (packetDecoder, error)
peek(offset, length int) (packetDecoder, error) // similar to getSubset, but it doesn't advance the offset
// Stacks, see PushDecoder
push(in pushDecoder) error
pop() error
}
// PushDecoder is the interface for decoding fields like CRCs and lengths where the validity
// of the field depends on what is after it in the packet. Start them with PacketDecoder.Push() where
// the actual value is located in the packet, then PacketDecoder.Pop() them when all the bytes they
// depend upon have been decoded.
type pushDecoder interface {
// Saves the offset into the input buffer as the location to actually read the calculated value when able.
saveOffset(in int)
// Returns the length of data to reserve for the input of this encoder (eg 4 bytes for a CRC32).
reserveLength() int
// Indicates that all required data is now available to calculate and check the field.
// SaveOffset is guaranteed to have been called first. The implementation should read ReserveLength() bytes
// of data from the saved offset, and verify it based on the data between the saved offset and curOffset.
check(curOffset int, buf []byte) error
}
// dynamicPushDecoder extends the interface of pushDecoder for uses cases where the length of the
// fields itself is unknown until its value was decoded (for instance varint encoded length
// fields).
// During push, dynamicPushDecoder.decode() method will be called instead of reserveLength()
type dynamicPushDecoder interface {
pushDecoder
decoder
}

64
vendor/github.com/Shopify/sarama/packet_encoder.go generated vendored Normal file
View File

@ -0,0 +1,64 @@
package sarama
import "github.com/rcrowley/go-metrics"
// PacketEncoder is the interface providing helpers for writing with Kafka's encoding rules.
// Types implementing Encoder only need to worry about calling methods like PutString,
// not about how a string is represented in Kafka.
type packetEncoder interface {
// Primitives
putInt8(in int8)
putInt16(in int16)
putInt32(in int32)
putInt64(in int64)
putVarint(in int64)
putArrayLength(in int) error
// Collections
putBytes(in []byte) error
putVarintBytes(in []byte) error
putRawBytes(in []byte) error
putString(in string) error
putNullableString(in *string) error
putStringArray(in []string) error
putInt32Array(in []int32) error
putInt64Array(in []int64) error
// Provide the current offset to record the batch size metric
offset() int
// Stacks, see PushEncoder
push(in pushEncoder)
pop() error
// To record metrics when provided
metricRegistry() metrics.Registry
}
// PushEncoder is the interface for encoding fields like CRCs and lengths where the value
// of the field depends on what is encoded after it in the packet. Start them with PacketEncoder.Push() where
// the actual value is located in the packet, then PacketEncoder.Pop() them when all the bytes they
// depend upon have been written.
type pushEncoder interface {
// Saves the offset into the input buffer as the location to actually write the calculated value when able.
saveOffset(in int)
// Returns the length of data to reserve for the output of this encoder (eg 4 bytes for a CRC32).
reserveLength() int
// Indicates that all required data is now available to calculate and write the field.
// SaveOffset is guaranteed to have been called first. The implementation should write ReserveLength() bytes
// of data to the saved offset, based on the data between the saved offset and curOffset.
run(curOffset int, buf []byte) error
}
// dynamicPushEncoder extends the interface of pushEncoder for uses cases where the length of the
// fields itself is unknown until its value was computed (for instance varint encoded length
// fields).
type dynamicPushEncoder interface {
pushEncoder
// Called during pop() to adjust the length of the field.
// It should return the difference in bytes between the last computed length and current length.
adjustLength(currOffset int) int
}

135
vendor/github.com/Shopify/sarama/partitioner.go generated vendored Normal file
View File

@ -0,0 +1,135 @@
package sarama
import (
"hash"
"hash/fnv"
"math/rand"
"time"
)
// Partitioner is anything that, given a Kafka message and a number of partitions indexed [0...numPartitions-1],
// decides to which partition to send the message. RandomPartitioner, RoundRobinPartitioner and HashPartitioner are provided
// as simple default implementations.
type Partitioner interface {
// Partition takes a message and partition count and chooses a partition
Partition(message *ProducerMessage, numPartitions int32) (int32, error)
// RequiresConsistency indicates to the user of the partitioner whether the
// mapping of key->partition is consistent or not. Specifically, if a
// partitioner requires consistency then it must be allowed to choose from all
// partitions (even ones known to be unavailable), and its choice must be
// respected by the caller. The obvious example is the HashPartitioner.
RequiresConsistency() bool
}
// PartitionerConstructor is the type for a function capable of constructing new Partitioners.
type PartitionerConstructor func(topic string) Partitioner
type manualPartitioner struct{}
// NewManualPartitioner returns a Partitioner which uses the partition manually set in the provided
// ProducerMessage's Partition field as the partition to produce to.
func NewManualPartitioner(topic string) Partitioner {
return new(manualPartitioner)
}
func (p *manualPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
return message.Partition, nil
}
func (p *manualPartitioner) RequiresConsistency() bool {
return true
}
type randomPartitioner struct {
generator *rand.Rand
}
// NewRandomPartitioner returns a Partitioner which chooses a random partition each time.
func NewRandomPartitioner(topic string) Partitioner {
p := new(randomPartitioner)
p.generator = rand.New(rand.NewSource(time.Now().UTC().UnixNano()))
return p
}
func (p *randomPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
return int32(p.generator.Intn(int(numPartitions))), nil
}
func (p *randomPartitioner) RequiresConsistency() bool {
return false
}
type roundRobinPartitioner struct {
partition int32
}
// NewRoundRobinPartitioner returns a Partitioner which walks through the available partitions one at a time.
func NewRoundRobinPartitioner(topic string) Partitioner {
return &roundRobinPartitioner{}
}
func (p *roundRobinPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
if p.partition >= numPartitions {
p.partition = 0
}
ret := p.partition
p.partition++
return ret, nil
}
func (p *roundRobinPartitioner) RequiresConsistency() bool {
return false
}
type hashPartitioner struct {
random Partitioner
hasher hash.Hash32
}
// NewCustomHashPartitioner is a wrapper around NewHashPartitioner, allowing the use of custom hasher.
// The argument is a function providing the instance, implementing the hash.Hash32 interface. This is to ensure that
// each partition dispatcher gets its own hasher, to avoid concurrency issues by sharing an instance.
func NewCustomHashPartitioner(hasher func() hash.Hash32) PartitionerConstructor {
return func(topic string) Partitioner {
p := new(hashPartitioner)
p.random = NewRandomPartitioner(topic)
p.hasher = hasher()
return p
}
}
// NewHashPartitioner returns a Partitioner which behaves as follows. If the message's key is nil then a
// random partition is chosen. Otherwise the FNV-1a hash of the encoded bytes of the message key is used,
// modulus the number of partitions. This ensures that messages with the same key always end up on the
// same partition.
func NewHashPartitioner(topic string) Partitioner {
p := new(hashPartitioner)
p.random = NewRandomPartitioner(topic)
p.hasher = fnv.New32a()
return p
}
func (p *hashPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
if message.Key == nil {
return p.random.Partition(message, numPartitions)
}
bytes, err := message.Key.Encode()
if err != nil {
return -1, err
}
p.hasher.Reset()
_, err = p.hasher.Write(bytes)
if err != nil {
return -1, err
}
partition := int32(p.hasher.Sum32()) % numPartitions
if partition < 0 {
partition = -partition
}
return partition, nil
}
func (p *hashPartitioner) RequiresConsistency() bool {
return true
}

149
vendor/github.com/Shopify/sarama/prep_encoder.go generated vendored Normal file
View File

@ -0,0 +1,149 @@
package sarama
import (
"encoding/binary"
"fmt"
"math"
"github.com/rcrowley/go-metrics"
)
type prepEncoder struct {
stack []pushEncoder
length int
}
// primitives
func (pe *prepEncoder) putInt8(in int8) {
pe.length++
}
func (pe *prepEncoder) putInt16(in int16) {
pe.length += 2
}
func (pe *prepEncoder) putInt32(in int32) {
pe.length += 4
}
func (pe *prepEncoder) putInt64(in int64) {
pe.length += 8
}
func (pe *prepEncoder) putVarint(in int64) {
var buf [binary.MaxVarintLen64]byte
pe.length += binary.PutVarint(buf[:], in)
}
func (pe *prepEncoder) putArrayLength(in int) error {
if in > math.MaxInt32 {
return PacketEncodingError{fmt.Sprintf("array too long (%d)", in)}
}
pe.length += 4
return nil
}
// arrays
func (pe *prepEncoder) putBytes(in []byte) error {
pe.length += 4
if in == nil {
return nil
}
return pe.putRawBytes(in)
}
func (pe *prepEncoder) putVarintBytes(in []byte) error {
if in == nil {
pe.putVarint(-1)
return nil
}
pe.putVarint(int64(len(in)))
return pe.putRawBytes(in)
}
func (pe *prepEncoder) putRawBytes(in []byte) error {
if len(in) > math.MaxInt32 {
return PacketEncodingError{fmt.Sprintf("byteslice too long (%d)", len(in))}
}
pe.length += len(in)
return nil
}
func (pe *prepEncoder) putNullableString(in *string) error {
if in == nil {
pe.length += 2
return nil
}
return pe.putString(*in)
}
func (pe *prepEncoder) putString(in string) error {
pe.length += 2
if len(in) > math.MaxInt16 {
return PacketEncodingError{fmt.Sprintf("string too long (%d)", len(in))}
}
pe.length += len(in)
return nil
}
func (pe *prepEncoder) putStringArray(in []string) error {
err := pe.putArrayLength(len(in))
if err != nil {
return err
}
for _, str := range in {
if err := pe.putString(str); err != nil {
return err
}
}
return nil
}
func (pe *prepEncoder) putInt32Array(in []int32) error {
err := pe.putArrayLength(len(in))
if err != nil {
return err
}
pe.length += 4 * len(in)
return nil
}
func (pe *prepEncoder) putInt64Array(in []int64) error {
err := pe.putArrayLength(len(in))
if err != nil {
return err
}
pe.length += 8 * len(in)
return nil
}
func (pe *prepEncoder) offset() int {
return pe.length
}
// stackable
func (pe *prepEncoder) push(in pushEncoder) {
in.saveOffset(pe.length)
pe.length += in.reserveLength()
pe.stack = append(pe.stack, in)
}
func (pe *prepEncoder) pop() error {
in := pe.stack[len(pe.stack)-1]
pe.stack = pe.stack[:len(pe.stack)-1]
if dpe, ok := in.(dynamicPushEncoder); ok {
pe.length += dpe.adjustLength(pe.length)
}
return nil
}
// we do not record metrics during the prep encoder pass
func (pe *prepEncoder) metricRegistry() metrics.Registry {
return nil
}

252
vendor/github.com/Shopify/sarama/produce_request.go generated vendored Normal file
View File

@ -0,0 +1,252 @@
package sarama
import "github.com/rcrowley/go-metrics"
// RequiredAcks is used in Produce Requests to tell the broker how many replica acknowledgements
// it must see before responding. Any of the constants defined here are valid. On broker versions
// prior to 0.8.2.0 any other positive int16 is also valid (the broker will wait for that many
// acknowledgements) but in 0.8.2.0 and later this will raise an exception (it has been replaced
// by setting the `min.isr` value in the brokers configuration).
type RequiredAcks int16
const (
// NoResponse doesn't send any response, the TCP ACK is all you get.
NoResponse RequiredAcks = 0
// WaitForLocal waits for only the local commit to succeed before responding.
WaitForLocal RequiredAcks = 1
// WaitForAll waits for all in-sync replicas to commit before responding.
// The minimum number of in-sync replicas is configured on the broker via
// the `min.insync.replicas` configuration key.
WaitForAll RequiredAcks = -1
)
type ProduceRequest struct {
TransactionalID *string
RequiredAcks RequiredAcks
Timeout int32
Version int16 // v1 requires Kafka 0.9, v2 requires Kafka 0.10, v3 requires Kafka 0.11
records map[string]map[int32]Records
}
func updateMsgSetMetrics(msgSet *MessageSet, compressionRatioMetric metrics.Histogram,
topicCompressionRatioMetric metrics.Histogram) int64 {
var topicRecordCount int64
for _, messageBlock := range msgSet.Messages {
// Is this a fake "message" wrapping real messages?
if messageBlock.Msg.Set != nil {
topicRecordCount += int64(len(messageBlock.Msg.Set.Messages))
} else {
// A single uncompressed message
topicRecordCount++
}
// Better be safe than sorry when computing the compression ratio
if messageBlock.Msg.compressedSize != 0 {
compressionRatio := float64(len(messageBlock.Msg.Value)) /
float64(messageBlock.Msg.compressedSize)
// Histogram do not support decimal values, let's multiple it by 100 for better precision
intCompressionRatio := int64(100 * compressionRatio)
compressionRatioMetric.Update(intCompressionRatio)
topicCompressionRatioMetric.Update(intCompressionRatio)
}
}
return topicRecordCount
}
func updateBatchMetrics(recordBatch *RecordBatch, compressionRatioMetric metrics.Histogram,
topicCompressionRatioMetric metrics.Histogram) int64 {
if recordBatch.compressedRecords != nil {
compressionRatio := int64(float64(recordBatch.recordsLen) / float64(len(recordBatch.compressedRecords)) * 100)
compressionRatioMetric.Update(compressionRatio)
topicCompressionRatioMetric.Update(compressionRatio)
}
return int64(len(recordBatch.Records))
}
func (r *ProduceRequest) encode(pe packetEncoder) error {
if r.Version >= 3 {
if err := pe.putNullableString(r.TransactionalID); err != nil {
return err
}
}
pe.putInt16(int16(r.RequiredAcks))
pe.putInt32(r.Timeout)
metricRegistry := pe.metricRegistry()
var batchSizeMetric metrics.Histogram
var compressionRatioMetric metrics.Histogram
if metricRegistry != nil {
batchSizeMetric = getOrRegisterHistogram("batch-size", metricRegistry)
compressionRatioMetric = getOrRegisterHistogram("compression-ratio", metricRegistry)
}
totalRecordCount := int64(0)
err := pe.putArrayLength(len(r.records))
if err != nil {
return err
}
for topic, partitions := range r.records {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
topicRecordCount := int64(0)
var topicCompressionRatioMetric metrics.Histogram
if metricRegistry != nil {
topicCompressionRatioMetric = getOrRegisterTopicHistogram("compression-ratio", topic, metricRegistry)
}
for id, records := range partitions {
startOffset := pe.offset()
pe.putInt32(id)
pe.push(&lengthField{})
err = records.encode(pe)
if err != nil {
return err
}
err = pe.pop()
if err != nil {
return err
}
if metricRegistry != nil {
if r.Version >= 3 {
topicRecordCount += updateBatchMetrics(records.recordBatch, compressionRatioMetric, topicCompressionRatioMetric)
} else {
topicRecordCount += updateMsgSetMetrics(records.msgSet, compressionRatioMetric, topicCompressionRatioMetric)
}
batchSize := int64(pe.offset() - startOffset)
batchSizeMetric.Update(batchSize)
getOrRegisterTopicHistogram("batch-size", topic, metricRegistry).Update(batchSize)
}
}
if topicRecordCount > 0 {
getOrRegisterTopicMeter("record-send-rate", topic, metricRegistry).Mark(topicRecordCount)
getOrRegisterTopicHistogram("records-per-request", topic, metricRegistry).Update(topicRecordCount)
totalRecordCount += topicRecordCount
}
}
if totalRecordCount > 0 {
metrics.GetOrRegisterMeter("record-send-rate", metricRegistry).Mark(totalRecordCount)
getOrRegisterHistogram("records-per-request", metricRegistry).Update(totalRecordCount)
}
return nil
}
func (r *ProduceRequest) decode(pd packetDecoder, version int16) error {
r.Version = version
if version >= 3 {
id, err := pd.getNullableString()
if err != nil {
return err
}
r.TransactionalID = id
}
requiredAcks, err := pd.getInt16()
if err != nil {
return err
}
r.RequiredAcks = RequiredAcks(requiredAcks)
if r.Timeout, err = pd.getInt32(); err != nil {
return err
}
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
r.records = make(map[string]map[int32]Records)
for i := 0; i < topicCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
r.records[topic] = make(map[int32]Records)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
size, err := pd.getInt32()
if err != nil {
return err
}
recordsDecoder, err := pd.getSubset(int(size))
if err != nil {
return err
}
var records Records
if err := records.decode(recordsDecoder); err != nil {
return err
}
r.records[topic][partition] = records
}
}
return nil
}
func (r *ProduceRequest) key() int16 {
return 0
}
func (r *ProduceRequest) version() int16 {
return r.Version
}
func (r *ProduceRequest) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_9_0_0
case 2:
return V0_10_0_0
case 3:
return V0_11_0_0
default:
return minVersion
}
}
func (r *ProduceRequest) ensureRecords(topic string, partition int32) {
if r.records == nil {
r.records = make(map[string]map[int32]Records)
}
if r.records[topic] == nil {
r.records[topic] = make(map[int32]Records)
}
}
func (r *ProduceRequest) AddMessage(topic string, partition int32, msg *Message) {
r.ensureRecords(topic, partition)
set := r.records[topic][partition].msgSet
if set == nil {
set = new(MessageSet)
r.records[topic][partition] = newLegacyRecords(set)
}
set.addMessage(msg)
}
func (r *ProduceRequest) AddSet(topic string, partition int32, set *MessageSet) {
r.ensureRecords(topic, partition)
r.records[topic][partition] = newLegacyRecords(set)
}
func (r *ProduceRequest) AddBatch(topic string, partition int32, batch *RecordBatch) {
r.ensureRecords(topic, partition)
r.records[topic][partition] = newDefaultRecords(batch)
}

183
vendor/github.com/Shopify/sarama/produce_response.go generated vendored Normal file
View File

@ -0,0 +1,183 @@
package sarama
import (
"fmt"
"time"
)
type ProduceResponseBlock struct {
Err KError
Offset int64
// only provided if Version >= 2 and the broker is configured with `LogAppendTime`
Timestamp time.Time
}
func (b *ProduceResponseBlock) decode(pd packetDecoder, version int16) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
b.Err = KError(tmp)
b.Offset, err = pd.getInt64()
if err != nil {
return err
}
if version >= 2 {
if millis, err := pd.getInt64(); err != nil {
return err
} else if millis != -1 {
b.Timestamp = time.Unix(millis/1000, (millis%1000)*int64(time.Millisecond))
}
}
return nil
}
func (b *ProduceResponseBlock) encode(pe packetEncoder, version int16) (err error) {
pe.putInt16(int16(b.Err))
pe.putInt64(b.Offset)
if version >= 2 {
timestamp := int64(-1)
if !b.Timestamp.Before(time.Unix(0, 0)) {
timestamp = b.Timestamp.UnixNano() / int64(time.Millisecond)
} else if !b.Timestamp.IsZero() {
return PacketEncodingError{fmt.Sprintf("invalid timestamp (%v)", b.Timestamp)}
}
pe.putInt64(timestamp)
}
return nil
}
type ProduceResponse struct {
Blocks map[string]map[int32]*ProduceResponseBlock
Version int16
ThrottleTime time.Duration // only provided if Version >= 1
}
func (r *ProduceResponse) decode(pd packetDecoder, version int16) (err error) {
r.Version = version
numTopics, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks = make(map[string]map[int32]*ProduceResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks[name] = make(map[int32]*ProduceResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(ProduceResponseBlock)
err = block.decode(pd, version)
if err != nil {
return err
}
r.Blocks[name][id] = block
}
}
if r.Version >= 1 {
millis, err := pd.getInt32()
if err != nil {
return err
}
r.ThrottleTime = time.Duration(millis) * time.Millisecond
}
return nil
}
func (r *ProduceResponse) encode(pe packetEncoder) error {
err := pe.putArrayLength(len(r.Blocks))
if err != nil {
return err
}
for topic, partitions := range r.Blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
for id, prb := range partitions {
pe.putInt32(id)
err = prb.encode(pe, r.Version)
if err != nil {
return err
}
}
}
if r.Version >= 1 {
pe.putInt32(int32(r.ThrottleTime / time.Millisecond))
}
return nil
}
func (r *ProduceResponse) key() int16 {
return 0
}
func (r *ProduceResponse) version() int16 {
return r.Version
}
func (r *ProduceResponse) requiredVersion() KafkaVersion {
switch r.Version {
case 1:
return V0_9_0_0
case 2:
return V0_10_0_0
case 3:
return V0_11_0_0
default:
return minVersion
}
}
func (r *ProduceResponse) GetBlock(topic string, partition int32) *ProduceResponseBlock {
if r.Blocks == nil {
return nil
}
if r.Blocks[topic] == nil {
return nil
}
return r.Blocks[topic][partition]
}
// Testing API
func (r *ProduceResponse) AddTopicPartition(topic string, partition int32, err KError) {
if r.Blocks == nil {
r.Blocks = make(map[string]map[int32]*ProduceResponseBlock)
}
byTopic, ok := r.Blocks[topic]
if !ok {
byTopic = make(map[int32]*ProduceResponseBlock)
r.Blocks[topic] = byTopic
}
byTopic[partition] = &ProduceResponseBlock{Err: err}
}

224
vendor/github.com/Shopify/sarama/produce_set.go generated vendored Normal file
View File

@ -0,0 +1,224 @@
package sarama
import (
"encoding/binary"
"time"
)
type partitionSet struct {
msgs []*ProducerMessage
recordsToSend Records
bufferBytes int
}
type produceSet struct {
parent *asyncProducer
msgs map[string]map[int32]*partitionSet
bufferBytes int
bufferCount int
}
func newProduceSet(parent *asyncProducer) *produceSet {
return &produceSet{
msgs: make(map[string]map[int32]*partitionSet),
parent: parent,
}
}
func (ps *produceSet) add(msg *ProducerMessage) error {
var err error
var key, val []byte
if msg.Key != nil {
if key, err = msg.Key.Encode(); err != nil {
return err
}
}
if msg.Value != nil {
if val, err = msg.Value.Encode(); err != nil {
return err
}
}
timestamp := msg.Timestamp
if msg.Timestamp.IsZero() {
timestamp = time.Now()
}
partitions := ps.msgs[msg.Topic]
if partitions == nil {
partitions = make(map[int32]*partitionSet)
ps.msgs[msg.Topic] = partitions
}
var size int
set := partitions[msg.Partition]
if set == nil {
if ps.parent.conf.Version.IsAtLeast(V0_11_0_0) {
batch := &RecordBatch{
FirstTimestamp: timestamp,
Version: 2,
ProducerID: -1, /* No producer id */
Codec: ps.parent.conf.Producer.Compression,
}
set = &partitionSet{recordsToSend: newDefaultRecords(batch)}
size = recordBatchOverhead
} else {
set = &partitionSet{recordsToSend: newLegacyRecords(new(MessageSet))}
}
partitions[msg.Partition] = set
}
set.msgs = append(set.msgs, msg)
if ps.parent.conf.Version.IsAtLeast(V0_11_0_0) {
// We are being conservative here to avoid having to prep encode the record
size += maximumRecordOverhead
rec := &Record{
Key: key,
Value: val,
TimestampDelta: timestamp.Sub(set.recordsToSend.recordBatch.FirstTimestamp),
}
size += len(key) + len(val)
if len(msg.Headers) > 0 {
rec.Headers = make([]*RecordHeader, len(msg.Headers))
for i := range msg.Headers {
rec.Headers[i] = &msg.Headers[i]
size += len(rec.Headers[i].Key) + len(rec.Headers[i].Value) + 2*binary.MaxVarintLen32
}
}
set.recordsToSend.recordBatch.addRecord(rec)
} else {
msgToSend := &Message{Codec: CompressionNone, Key: key, Value: val}
if ps.parent.conf.Version.IsAtLeast(V0_10_0_0) {
msgToSend.Timestamp = timestamp
msgToSend.Version = 1
}
set.recordsToSend.msgSet.addMessage(msgToSend)
size = producerMessageOverhead + len(key) + len(val)
}
set.bufferBytes += size
ps.bufferBytes += size
ps.bufferCount++
return nil
}
func (ps *produceSet) buildRequest() *ProduceRequest {
req := &ProduceRequest{
RequiredAcks: ps.parent.conf.Producer.RequiredAcks,
Timeout: int32(ps.parent.conf.Producer.Timeout / time.Millisecond),
}
if ps.parent.conf.Version.IsAtLeast(V0_10_0_0) {
req.Version = 2
}
if ps.parent.conf.Version.IsAtLeast(V0_11_0_0) {
req.Version = 3
}
for topic, partitionSet := range ps.msgs {
for partition, set := range partitionSet {
if req.Version >= 3 {
req.AddBatch(topic, partition, set.recordsToSend.recordBatch)
continue
}
if ps.parent.conf.Producer.Compression == CompressionNone {
req.AddSet(topic, partition, set.recordsToSend.msgSet)
} else {
// When compression is enabled, the entire set for each partition is compressed
// and sent as the payload of a single fake "message" with the appropriate codec
// set and no key. When the server sees a message with a compression codec, it
// decompresses the payload and treats the result as its message set.
payload, err := encode(set.recordsToSend.msgSet, ps.parent.conf.MetricRegistry)
if err != nil {
Logger.Println(err) // if this happens, it's basically our fault.
panic(err)
}
compMsg := &Message{
Codec: ps.parent.conf.Producer.Compression,
Key: nil,
Value: payload,
Set: set.recordsToSend.msgSet, // Provide the underlying message set for accurate metrics
}
if ps.parent.conf.Version.IsAtLeast(V0_10_0_0) {
compMsg.Version = 1
compMsg.Timestamp = set.recordsToSend.msgSet.Messages[0].Msg.Timestamp
}
req.AddMessage(topic, partition, compMsg)
}
}
}
return req
}
func (ps *produceSet) eachPartition(cb func(topic string, partition int32, msgs []*ProducerMessage)) {
for topic, partitionSet := range ps.msgs {
for partition, set := range partitionSet {
cb(topic, partition, set.msgs)
}
}
}
func (ps *produceSet) dropPartition(topic string, partition int32) []*ProducerMessage {
if ps.msgs[topic] == nil {
return nil
}
set := ps.msgs[topic][partition]
if set == nil {
return nil
}
ps.bufferBytes -= set.bufferBytes
ps.bufferCount -= len(set.msgs)
delete(ps.msgs[topic], partition)
return set.msgs
}
func (ps *produceSet) wouldOverflow(msg *ProducerMessage) bool {
version := 1
if ps.parent.conf.Version.IsAtLeast(V0_11_0_0) {
version = 2
}
switch {
// Would we overflow our maximum possible size-on-the-wire? 10KiB is arbitrary overhead for safety.
case ps.bufferBytes+msg.byteSize(version) >= int(MaxRequestSize-(10*1024)):
return true
// Would we overflow the size-limit of a compressed message-batch for this partition?
case ps.parent.conf.Producer.Compression != CompressionNone &&
ps.msgs[msg.Topic] != nil && ps.msgs[msg.Topic][msg.Partition] != nil &&
ps.msgs[msg.Topic][msg.Partition].bufferBytes+msg.byteSize(version) >= ps.parent.conf.Producer.MaxMessageBytes:
return true
// Would we overflow simply in number of messages?
case ps.parent.conf.Producer.Flush.MaxMessages > 0 && ps.bufferCount >= ps.parent.conf.Producer.Flush.MaxMessages:
return true
default:
return false
}
}
func (ps *produceSet) readyToFlush() bool {
switch {
// If we don't have any messages, nothing else matters
case ps.empty():
return false
// If all three config values are 0, we always flush as-fast-as-possible
case ps.parent.conf.Producer.Flush.Frequency == 0 && ps.parent.conf.Producer.Flush.Bytes == 0 && ps.parent.conf.Producer.Flush.Messages == 0:
return true
// If we've passed the message trigger-point
case ps.parent.conf.Producer.Flush.Messages > 0 && ps.bufferCount >= ps.parent.conf.Producer.Flush.Messages:
return true
// If we've passed the byte trigger-point
case ps.parent.conf.Producer.Flush.Bytes > 0 && ps.bufferBytes >= ps.parent.conf.Producer.Flush.Bytes:
return true
default:
return false
}
}
func (ps *produceSet) empty() bool {
return ps.bufferCount == 0
}

306
vendor/github.com/Shopify/sarama/real_decoder.go generated vendored Normal file
View File

@ -0,0 +1,306 @@
package sarama
import (
"encoding/binary"
"math"
)
var errInvalidArrayLength = PacketDecodingError{"invalid array length"}
var errInvalidByteSliceLength = PacketDecodingError{"invalid byteslice length"}
var errInvalidByteSliceLengthType = PacketDecodingError{"invalid byteslice length type"}
var errInvalidStringLength = PacketDecodingError{"invalid string length"}
var errInvalidSubsetSize = PacketDecodingError{"invalid subset size"}
var errVarintOverflow = PacketDecodingError{"varint overflow"}
type realDecoder struct {
raw []byte
off int
stack []pushDecoder
}
// primitives
func (rd *realDecoder) getInt8() (int8, error) {
if rd.remaining() < 1 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int8(rd.raw[rd.off])
rd.off++
return tmp, nil
}
func (rd *realDecoder) getInt16() (int16, error) {
if rd.remaining() < 2 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int16(binary.BigEndian.Uint16(rd.raw[rd.off:]))
rd.off += 2
return tmp, nil
}
func (rd *realDecoder) getInt32() (int32, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int32(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
return tmp, nil
}
func (rd *realDecoder) getInt64() (int64, error) {
if rd.remaining() < 8 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int64(binary.BigEndian.Uint64(rd.raw[rd.off:]))
rd.off += 8
return tmp, nil
}
func (rd *realDecoder) getVarint() (int64, error) {
tmp, n := binary.Varint(rd.raw[rd.off:])
if n == 0 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
if n < 0 {
rd.off -= n
return -1, errVarintOverflow
}
rd.off += n
return tmp, nil
}
func (rd *realDecoder) getArrayLength() (int, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int(int32(binary.BigEndian.Uint32(rd.raw[rd.off:])))
rd.off += 4
if tmp > rd.remaining() {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
} else if tmp > 2*math.MaxUint16 {
return -1, errInvalidArrayLength
}
return tmp, nil
}
// collections
func (rd *realDecoder) getBytes() ([]byte, error) {
tmp, err := rd.getInt32()
if err != nil {
return nil, err
}
if tmp == -1 {
return nil, nil
}
return rd.getRawBytes(int(tmp))
}
func (rd *realDecoder) getVarintBytes() ([]byte, error) {
tmp, err := rd.getVarint()
if err != nil {
return nil, err
}
if tmp == -1 {
return nil, nil
}
return rd.getRawBytes(int(tmp))
}
func (rd *realDecoder) getString() (string, error) {
tmp, err := rd.getInt16()
if err != nil {
return "", err
}
n := int(tmp)
switch {
case n < -1:
return "", errInvalidStringLength
case n == -1:
return "", nil
case n == 0:
return "", nil
case n > rd.remaining():
rd.off = len(rd.raw)
return "", ErrInsufficientData
}
tmpStr := string(rd.raw[rd.off : rd.off+n])
rd.off += n
return tmpStr, nil
}
func (rd *realDecoder) getNullableString() (*string, error) {
tmp, err := rd.getInt16()
if err != nil || tmp == -1 {
return nil, err
}
str, err := rd.getString()
return &str, err
}
func (rd *realDecoder) getInt32Array() ([]int32, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
n := int(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
if rd.remaining() < 4*n {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
if n == 0 {
return nil, nil
}
if n < 0 {
return nil, errInvalidArrayLength
}
ret := make([]int32, n)
for i := range ret {
ret[i] = int32(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
}
return ret, nil
}
func (rd *realDecoder) getInt64Array() ([]int64, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
n := int(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
if rd.remaining() < 8*n {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
if n == 0 {
return nil, nil
}
if n < 0 {
return nil, errInvalidArrayLength
}
ret := make([]int64, n)
for i := range ret {
ret[i] = int64(binary.BigEndian.Uint64(rd.raw[rd.off:]))
rd.off += 8
}
return ret, nil
}
func (rd *realDecoder) getStringArray() ([]string, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
n := int(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
if n == 0 {
return nil, nil
}
if n < 0 {
return nil, errInvalidArrayLength
}
ret := make([]string, n)
for i := range ret {
str, err := rd.getString()
if err != nil {
return nil, err
}
ret[i] = str
}
return ret, nil
}
// subsets
func (rd *realDecoder) remaining() int {
return len(rd.raw) - rd.off
}
func (rd *realDecoder) getSubset(length int) (packetDecoder, error) {
buf, err := rd.getRawBytes(length)
if err != nil {
return nil, err
}
return &realDecoder{raw: buf}, nil
}
func (rd *realDecoder) getRawBytes(length int) ([]byte, error) {
if length < 0 {
return nil, errInvalidByteSliceLength
} else if length > rd.remaining() {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
start := rd.off
rd.off += length
return rd.raw[start:rd.off], nil
}
func (rd *realDecoder) peek(offset, length int) (packetDecoder, error) {
if rd.remaining() < offset+length {
return nil, ErrInsufficientData
}
off := rd.off + offset
return &realDecoder{raw: rd.raw[off : off+length]}, nil
}
// stacks
func (rd *realDecoder) push(in pushDecoder) error {
in.saveOffset(rd.off)
var reserve int
if dpd, ok := in.(dynamicPushDecoder); ok {
if err := dpd.decode(rd); err != nil {
return err
}
} else {
reserve = in.reserveLength()
if rd.remaining() < reserve {
rd.off = len(rd.raw)
return ErrInsufficientData
}
}
rd.stack = append(rd.stack, in)
rd.off += reserve
return nil
}
func (rd *realDecoder) pop() error {
// this is go's ugly pop pattern (the inverse of append)
in := rd.stack[len(rd.stack)-1]
rd.stack = rd.stack[:len(rd.stack)-1]
return in.check(rd.off, rd.raw)
}

148
vendor/github.com/Shopify/sarama/real_encoder.go generated vendored Normal file
View File

@ -0,0 +1,148 @@
package sarama
import (
"encoding/binary"
"github.com/rcrowley/go-metrics"
)
type realEncoder struct {
raw []byte
off int
stack []pushEncoder
registry metrics.Registry
}
// primitives
func (re *realEncoder) putInt8(in int8) {
re.raw[re.off] = byte(in)
re.off++
}
func (re *realEncoder) putInt16(in int16) {
binary.BigEndian.PutUint16(re.raw[re.off:], uint16(in))
re.off += 2
}
func (re *realEncoder) putInt32(in int32) {
binary.BigEndian.PutUint32(re.raw[re.off:], uint32(in))
re.off += 4
}
func (re *realEncoder) putInt64(in int64) {
binary.BigEndian.PutUint64(re.raw[re.off:], uint64(in))
re.off += 8
}
func (re *realEncoder) putVarint(in int64) {
re.off += binary.PutVarint(re.raw[re.off:], in)
}
func (re *realEncoder) putArrayLength(in int) error {
re.putInt32(int32(in))
return nil
}
// collection
func (re *realEncoder) putRawBytes(in []byte) error {
copy(re.raw[re.off:], in)
re.off += len(in)
return nil
}
func (re *realEncoder) putBytes(in []byte) error {
if in == nil {
re.putInt32(-1)
return nil
}
re.putInt32(int32(len(in)))
return re.putRawBytes(in)
}
func (re *realEncoder) putVarintBytes(in []byte) error {
if in == nil {
re.putVarint(-1)
return nil
}
re.putVarint(int64(len(in)))
return re.putRawBytes(in)
}
func (re *realEncoder) putString(in string) error {
re.putInt16(int16(len(in)))
copy(re.raw[re.off:], in)
re.off += len(in)
return nil
}
func (re *realEncoder) putNullableString(in *string) error {
if in == nil {
re.putInt16(-1)
return nil
}
return re.putString(*in)
}
func (re *realEncoder) putStringArray(in []string) error {
err := re.putArrayLength(len(in))
if err != nil {
return err
}
for _, val := range in {
if err := re.putString(val); err != nil {
return err
}
}
return nil
}
func (re *realEncoder) putInt32Array(in []int32) error {
err := re.putArrayLength(len(in))
if err != nil {
return err
}
for _, val := range in {
re.putInt32(val)
}
return nil
}
func (re *realEncoder) putInt64Array(in []int64) error {
err := re.putArrayLength(len(in))
if err != nil {
return err
}
for _, val := range in {
re.putInt64(val)
}
return nil
}
func (re *realEncoder) offset() int {
return re.off
}
// stacks
func (re *realEncoder) push(in pushEncoder) {
in.saveOffset(re.off)
re.off += in.reserveLength()
re.stack = append(re.stack, in)
}
func (re *realEncoder) pop() error {
// this is go's ugly pop pattern (the inverse of append)
in := re.stack[len(re.stack)-1]
re.stack = re.stack[:len(re.stack)-1]
return in.run(re.off, re.raw)
}
// we do record metrics during the real encoder pass
func (re *realEncoder) metricRegistry() metrics.Registry {
return re.registry
}

113
vendor/github.com/Shopify/sarama/record.go generated vendored Normal file
View File

@ -0,0 +1,113 @@
package sarama
import (
"encoding/binary"
"time"
)
const (
controlMask = 0x20
maximumRecordOverhead = 5*binary.MaxVarintLen32 + binary.MaxVarintLen64 + 1
)
type RecordHeader struct {
Key []byte
Value []byte
}
func (h *RecordHeader) encode(pe packetEncoder) error {
if err := pe.putVarintBytes(h.Key); err != nil {
return err
}
return pe.putVarintBytes(h.Value)
}
func (h *RecordHeader) decode(pd packetDecoder) (err error) {
if h.Key, err = pd.getVarintBytes(); err != nil {
return err
}
if h.Value, err = pd.getVarintBytes(); err != nil {
return err
}
return nil
}
type Record struct {
Attributes int8
TimestampDelta time.Duration
OffsetDelta int64
Key []byte
Value []byte
Headers []*RecordHeader
length varintLengthField
}
func (r *Record) encode(pe packetEncoder) error {
pe.push(&r.length)
pe.putInt8(r.Attributes)
pe.putVarint(int64(r.TimestampDelta / time.Millisecond))
pe.putVarint(r.OffsetDelta)
if err := pe.putVarintBytes(r.Key); err != nil {
return err
}
if err := pe.putVarintBytes(r.Value); err != nil {
return err
}
pe.putVarint(int64(len(r.Headers)))
for _, h := range r.Headers {
if err := h.encode(pe); err != nil {
return err
}
}
return pe.pop()
}
func (r *Record) decode(pd packetDecoder) (err error) {
if err = pd.push(&r.length); err != nil {
return err
}
if r.Attributes, err = pd.getInt8(); err != nil {
return err
}
timestamp, err := pd.getVarint()
if err != nil {
return err
}
r.TimestampDelta = time.Duration(timestamp) * time.Millisecond
if r.OffsetDelta, err = pd.getVarint(); err != nil {
return err
}
if r.Key, err = pd.getVarintBytes(); err != nil {
return err
}
if r.Value, err = pd.getVarintBytes(); err != nil {
return err
}
numHeaders, err := pd.getVarint()
if err != nil {
return err
}
if numHeaders >= 0 {
r.Headers = make([]*RecordHeader, numHeaders)
}
for i := int64(0); i < numHeaders; i++ {
hdr := new(RecordHeader)
if err := hdr.decode(pd); err != nil {
return err
}
r.Headers[i] = hdr
}
return pd.pop()
}

265
vendor/github.com/Shopify/sarama/record_batch.go generated vendored Normal file
View File

@ -0,0 +1,265 @@
package sarama
import (
"bytes"
"compress/gzip"
"fmt"
"io/ioutil"
"time"
"github.com/eapache/go-xerial-snappy"
"github.com/pierrec/lz4"
)
const recordBatchOverhead = 49
type recordsArray []*Record
func (e recordsArray) encode(pe packetEncoder) error {
for _, r := range e {
if err := r.encode(pe); err != nil {
return err
}
}
return nil
}
func (e recordsArray) decode(pd packetDecoder) error {
for i := range e {
rec := &Record{}
if err := rec.decode(pd); err != nil {
return err
}
e[i] = rec
}
return nil
}
type RecordBatch struct {
FirstOffset int64
PartitionLeaderEpoch int32
Version int8
Codec CompressionCodec
Control bool
LastOffsetDelta int32
FirstTimestamp time.Time
MaxTimestamp time.Time
ProducerID int64
ProducerEpoch int16
FirstSequence int32
Records []*Record
PartialTrailingRecord bool
compressedRecords []byte
recordsLen int // uncompressed records size
}
func (b *RecordBatch) encode(pe packetEncoder) error {
if b.Version != 2 {
return PacketEncodingError{fmt.Sprintf("unsupported compression codec (%d)", b.Codec)}
}
pe.putInt64(b.FirstOffset)
pe.push(&lengthField{})
pe.putInt32(b.PartitionLeaderEpoch)
pe.putInt8(b.Version)
pe.push(newCRC32Field(crcCastagnoli))
pe.putInt16(b.computeAttributes())
pe.putInt32(b.LastOffsetDelta)
if err := (Timestamp{&b.FirstTimestamp}).encode(pe); err != nil {
return err
}
if err := (Timestamp{&b.MaxTimestamp}).encode(pe); err != nil {
return err
}
pe.putInt64(b.ProducerID)
pe.putInt16(b.ProducerEpoch)
pe.putInt32(b.FirstSequence)
if err := pe.putArrayLength(len(b.Records)); err != nil {
return err
}
if b.compressedRecords == nil {
if err := b.encodeRecords(pe); err != nil {
return err
}
}
if err := pe.putRawBytes(b.compressedRecords); err != nil {
return err
}
if err := pe.pop(); err != nil {
return err
}
return pe.pop()
}
func (b *RecordBatch) decode(pd packetDecoder) (err error) {
if b.FirstOffset, err = pd.getInt64(); err != nil {
return err
}
batchLen, err := pd.getInt32()
if err != nil {
return err
}
if b.PartitionLeaderEpoch, err = pd.getInt32(); err != nil {
return err
}
if b.Version, err = pd.getInt8(); err != nil {
return err
}
if err = pd.push(&crc32Field{polynomial: crcCastagnoli}); err != nil {
return err
}
attributes, err := pd.getInt16()
if err != nil {
return err
}
b.Codec = CompressionCodec(int8(attributes) & compressionCodecMask)
b.Control = attributes&controlMask == controlMask
if b.LastOffsetDelta, err = pd.getInt32(); err != nil {
return err
}
if err = (Timestamp{&b.FirstTimestamp}).decode(pd); err != nil {
return err
}
if err = (Timestamp{&b.MaxTimestamp}).decode(pd); err != nil {
return err
}
if b.ProducerID, err = pd.getInt64(); err != nil {
return err
}
if b.ProducerEpoch, err = pd.getInt16(); err != nil {
return err
}
if b.FirstSequence, err = pd.getInt32(); err != nil {
return err
}
numRecs, err := pd.getArrayLength()
if err != nil {
return err
}
if numRecs >= 0 {
b.Records = make([]*Record, numRecs)
}
bufSize := int(batchLen) - recordBatchOverhead
recBuffer, err := pd.getRawBytes(bufSize)
if err != nil {
if err == ErrInsufficientData {
b.PartialTrailingRecord = true
b.Records = nil
return nil
}
return err
}
if err = pd.pop(); err != nil {
return err
}
switch b.Codec {
case CompressionNone:
case CompressionGZIP:
reader, err := gzip.NewReader(bytes.NewReader(recBuffer))
if err != nil {
return err
}
if recBuffer, err = ioutil.ReadAll(reader); err != nil {
return err
}
case CompressionSnappy:
if recBuffer, err = snappy.Decode(recBuffer); err != nil {
return err
}
case CompressionLZ4:
reader := lz4.NewReader(bytes.NewReader(recBuffer))
if recBuffer, err = ioutil.ReadAll(reader); err != nil {
return err
}
default:
return PacketDecodingError{fmt.Sprintf("invalid compression specified (%d)", b.Codec)}
}
b.recordsLen = len(recBuffer)
err = decode(recBuffer, recordsArray(b.Records))
if err == ErrInsufficientData {
b.PartialTrailingRecord = true
b.Records = nil
return nil
}
return err
}
func (b *RecordBatch) encodeRecords(pe packetEncoder) error {
var raw []byte
if b.Codec != CompressionNone {
var err error
if raw, err = encode(recordsArray(b.Records), nil); err != nil {
return err
}
b.recordsLen = len(raw)
}
switch b.Codec {
case CompressionNone:
offset := pe.offset()
if err := recordsArray(b.Records).encode(pe); err != nil {
return err
}
b.recordsLen = pe.offset() - offset
case CompressionGZIP:
var buf bytes.Buffer
writer := gzip.NewWriter(&buf)
if _, err := writer.Write(raw); err != nil {
return err
}
if err := writer.Close(); err != nil {
return err
}
b.compressedRecords = buf.Bytes()
case CompressionSnappy:
b.compressedRecords = snappy.Encode(raw)
case CompressionLZ4:
var buf bytes.Buffer
writer := lz4.NewWriter(&buf)
if _, err := writer.Write(raw); err != nil {
return err
}
if err := writer.Close(); err != nil {
return err
}
b.compressedRecords = buf.Bytes()
default:
return PacketEncodingError{fmt.Sprintf("unsupported compression codec (%d)", b.Codec)}
}
return nil
}
func (b *RecordBatch) computeAttributes() int16 {
attr := int16(b.Codec) & int16(compressionCodecMask)
if b.Control {
attr |= controlMask
}
return attr
}
func (b *RecordBatch) addRecord(r *Record) {
b.Records = append(b.Records, r)
}

167
vendor/github.com/Shopify/sarama/records.go generated vendored Normal file
View File

@ -0,0 +1,167 @@
package sarama
import "fmt"
const (
unknownRecords = iota
legacyRecords
defaultRecords
magicOffset = 16
magicLength = 1
)
// Records implements a union type containing either a RecordBatch or a legacy MessageSet.
type Records struct {
recordsType int
msgSet *MessageSet
recordBatch *RecordBatch
}
func newLegacyRecords(msgSet *MessageSet) Records {
return Records{recordsType: legacyRecords, msgSet: msgSet}
}
func newDefaultRecords(batch *RecordBatch) Records {
return Records{recordsType: defaultRecords, recordBatch: batch}
}
// setTypeFromFields sets type of Records depending on which of msgSet or recordBatch is not nil.
// The first return value indicates whether both fields are nil (and the type is not set).
// If both fields are not nil, it returns an error.
func (r *Records) setTypeFromFields() (bool, error) {
if r.msgSet == nil && r.recordBatch == nil {
return true, nil
}
if r.msgSet != nil && r.recordBatch != nil {
return false, fmt.Errorf("both msgSet and recordBatch are set, but record type is unknown")
}
r.recordsType = defaultRecords
if r.msgSet != nil {
r.recordsType = legacyRecords
}
return false, nil
}
func (r *Records) encode(pe packetEncoder) error {
if r.recordsType == unknownRecords {
if empty, err := r.setTypeFromFields(); err != nil || empty {
return err
}
}
switch r.recordsType {
case legacyRecords:
if r.msgSet == nil {
return nil
}
return r.msgSet.encode(pe)
case defaultRecords:
if r.recordBatch == nil {
return nil
}
return r.recordBatch.encode(pe)
}
return fmt.Errorf("unknown records type: %v", r.recordsType)
}
func (r *Records) setTypeFromMagic(pd packetDecoder) error {
dec, err := pd.peek(magicOffset, magicLength)
if err != nil {
return err
}
magic, err := dec.getInt8()
if err != nil {
return err
}
r.recordsType = defaultRecords
if magic < 2 {
r.recordsType = legacyRecords
}
return nil
}
func (r *Records) decode(pd packetDecoder) error {
if r.recordsType == unknownRecords {
if err := r.setTypeFromMagic(pd); err != nil {
return nil
}
}
switch r.recordsType {
case legacyRecords:
r.msgSet = &MessageSet{}
return r.msgSet.decode(pd)
case defaultRecords:
r.recordBatch = &RecordBatch{}
return r.recordBatch.decode(pd)
}
return fmt.Errorf("unknown records type: %v", r.recordsType)
}
func (r *Records) numRecords() (int, error) {
if r.recordsType == unknownRecords {
if empty, err := r.setTypeFromFields(); err != nil || empty {
return 0, err
}
}
switch r.recordsType {
case legacyRecords:
if r.msgSet == nil {
return 0, nil
}
return len(r.msgSet.Messages), nil
case defaultRecords:
if r.recordBatch == nil {
return 0, nil
}
return len(r.recordBatch.Records), nil
}
return 0, fmt.Errorf("unknown records type: %v", r.recordsType)
}
func (r *Records) isPartial() (bool, error) {
if r.recordsType == unknownRecords {
if empty, err := r.setTypeFromFields(); err != nil || empty {
return false, err
}
}
switch r.recordsType {
case unknownRecords:
return false, nil
case legacyRecords:
if r.msgSet == nil {
return false, nil
}
return r.msgSet.PartialTrailingMessage, nil
case defaultRecords:
if r.recordBatch == nil {
return false, nil
}
return r.recordBatch.PartialTrailingRecord, nil
}
return false, fmt.Errorf("unknown records type: %v", r.recordsType)
}
func (r *Records) isControl() (bool, error) {
if r.recordsType == unknownRecords {
if empty, err := r.setTypeFromFields(); err != nil || empty {
return false, err
}
}
switch r.recordsType {
case legacyRecords:
return false, nil
case defaultRecords:
if r.recordBatch == nil {
return false, nil
}
return r.recordBatch.Control, nil
}
return false, fmt.Errorf("unknown records type: %v", r.recordsType)
}

119
vendor/github.com/Shopify/sarama/request.go generated vendored Normal file
View File

@ -0,0 +1,119 @@
package sarama
import (
"encoding/binary"
"fmt"
"io"
)
type protocolBody interface {
encoder
versionedDecoder
key() int16
version() int16
requiredVersion() KafkaVersion
}
type request struct {
correlationID int32
clientID string
body protocolBody
}
func (r *request) encode(pe packetEncoder) (err error) {
pe.push(&lengthField{})
pe.putInt16(r.body.key())
pe.putInt16(r.body.version())
pe.putInt32(r.correlationID)
err = pe.putString(r.clientID)
if err != nil {
return err
}
err = r.body.encode(pe)
if err != nil {
return err
}
return pe.pop()
}
func (r *request) decode(pd packetDecoder) (err error) {
var key int16
if key, err = pd.getInt16(); err != nil {
return err
}
var version int16
if version, err = pd.getInt16(); err != nil {
return err
}
if r.correlationID, err = pd.getInt32(); err != nil {
return err
}
r.clientID, err = pd.getString()
r.body = allocateBody(key, version)
if r.body == nil {
return PacketDecodingError{fmt.Sprintf("unknown request key (%d)", key)}
}
return r.body.decode(pd, version)
}
func decodeRequest(r io.Reader) (req *request, bytesRead int, err error) {
lengthBytes := make([]byte, 4)
if _, err := io.ReadFull(r, lengthBytes); err != nil {
return nil, bytesRead, err
}
bytesRead += len(lengthBytes)
length := int32(binary.BigEndian.Uint32(lengthBytes))
if length <= 4 || length > MaxRequestSize {
return nil, bytesRead, PacketDecodingError{fmt.Sprintf("message of length %d too large or too small", length)}
}
encodedReq := make([]byte, length)
if _, err := io.ReadFull(r, encodedReq); err != nil {
return nil, bytesRead, err
}
bytesRead += len(encodedReq)
req = &request{}
if err := decode(encodedReq, req); err != nil {
return nil, bytesRead, err
}
return req, bytesRead, nil
}
func allocateBody(key, version int16) protocolBody {
switch key {
case 0:
return &ProduceRequest{}
case 1:
return &FetchRequest{}
case 2:
return &OffsetRequest{Version: version}
case 3:
return &MetadataRequest{}
case 8:
return &OffsetCommitRequest{Version: version}
case 9:
return &OffsetFetchRequest{}
case 10:
return &ConsumerMetadataRequest{}
case 11:
return &JoinGroupRequest{}
case 12:
return &HeartbeatRequest{}
case 13:
return &LeaveGroupRequest{}
case 14:
return &SyncGroupRequest{}
case 15:
return &DescribeGroupsRequest{}
case 16:
return &ListGroupsRequest{}
case 17:
return &SaslHandshakeRequest{}
case 18:
return &ApiVersionsRequest{}
}
return nil
}

21
vendor/github.com/Shopify/sarama/response_header.go generated vendored Normal file
View File

@ -0,0 +1,21 @@
package sarama
import "fmt"
type responseHeader struct {
length int32
correlationID int32
}
func (r *responseHeader) decode(pd packetDecoder) (err error) {
r.length, err = pd.getInt32()
if err != nil {
return err
}
if r.length <= 4 || r.length > MaxResponseSize {
return PacketDecodingError{fmt.Sprintf("message of length %d too large or too small", r.length)}
}
r.correlationID, err = pd.getInt32()
return err
}

99
vendor/github.com/Shopify/sarama/sarama.go generated vendored Normal file
View File

@ -0,0 +1,99 @@
/*
Package sarama is a pure Go client library for dealing with Apache Kafka (versions 0.8 and later). It includes a high-level
API for easily producing and consuming messages, and a low-level API for controlling bytes on the wire when the high-level
API is insufficient. Usage examples for the high-level APIs are provided inline with their full documentation.
To produce messages, use either the AsyncProducer or the SyncProducer. The AsyncProducer accepts messages on a channel
and produces them asynchronously in the background as efficiently as possible; it is preferred in most cases.
The SyncProducer provides a method which will block until Kafka acknowledges the message as produced. This can be
useful but comes with two caveats: it will generally be less efficient, and the actual durability guarantees
depend on the configured value of `Producer.RequiredAcks`. There are configurations where a message acknowledged by the
SyncProducer can still sometimes be lost.
To consume messages, use the Consumer. Note that Sarama's Consumer implementation does not currently support automatic
consumer-group rebalancing and offset tracking. For Zookeeper-based tracking (Kafka 0.8.2 and earlier), the
https://github.com/wvanbergen/kafka library builds on Sarama to add this support. For Kafka-based tracking (Kafka 0.9
and later), the https://github.com/bsm/sarama-cluster library builds on Sarama to add this support.
For lower-level needs, the Broker and Request/Response objects permit precise control over each connection
and message sent on the wire; the Client provides higher-level metadata management that is shared between
the producers and the consumer. The Request/Response objects and properties are mostly undocumented, as they line up
exactly with the protocol fields documented by Kafka at
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
Metrics are exposed through https://github.com/rcrowley/go-metrics library in a local registry.
Broker related metrics:
+----------------------------------------------+------------+---------------------------------------------------------------+
| Name | Type | Description |
+----------------------------------------------+------------+---------------------------------------------------------------+
| incoming-byte-rate | meter | Bytes/second read off all brokers |
| incoming-byte-rate-for-broker-<broker-id> | meter | Bytes/second read off a given broker |
| outgoing-byte-rate | meter | Bytes/second written off all brokers |
| outgoing-byte-rate-for-broker-<broker-id> | meter | Bytes/second written off a given broker |
| request-rate | meter | Requests/second sent to all brokers |
| request-rate-for-broker-<broker-id> | meter | Requests/second sent to a given broker |
| request-size | histogram | Distribution of the request size in bytes for all brokers |
| request-size-for-broker-<broker-id> | histogram | Distribution of the request size in bytes for a given broker |
| request-latency-in-ms | histogram | Distribution of the request latency in ms for all brokers |
| request-latency-in-ms-for-broker-<broker-id> | histogram | Distribution of the request latency in ms for a given broker |
| response-rate | meter | Responses/second received from all brokers |
| response-rate-for-broker-<broker-id> | meter | Responses/second received from a given broker |
| response-size | histogram | Distribution of the response size in bytes for all brokers |
| response-size-for-broker-<broker-id> | histogram | Distribution of the response size in bytes for a given broker |
+----------------------------------------------+------------+---------------------------------------------------------------+
Note that we do not gather specific metrics for seed brokers but they are part of the "all brokers" metrics.
Producer related metrics:
+-------------------------------------------+------------+--------------------------------------------------------------------------------------+
| Name | Type | Description |
+-------------------------------------------+------------+--------------------------------------------------------------------------------------+
| batch-size | histogram | Distribution of the number of bytes sent per partition per request for all topics |
| batch-size-for-topic-<topic> | histogram | Distribution of the number of bytes sent per partition per request for a given topic |
| record-send-rate | meter | Records/second sent to all topics |
| record-send-rate-for-topic-<topic> | meter | Records/second sent to a given topic |
| records-per-request | histogram | Distribution of the number of records sent per request for all topics |
| records-per-request-for-topic-<topic> | histogram | Distribution of the number of records sent per request for a given topic |
| compression-ratio | histogram | Distribution of the compression ratio times 100 of record batches for all topics |
| compression-ratio-for-topic-<topic> | histogram | Distribution of the compression ratio times 100 of record batches for a given topic |
+-------------------------------------------+------------+--------------------------------------------------------------------------------------+
*/
package sarama
import (
"io/ioutil"
"log"
)
// Logger is the instance of a StdLogger interface that Sarama writes connection
// management events to. By default it is set to discard all log messages via ioutil.Discard,
// but you can set it to redirect wherever you want.
var Logger StdLogger = log.New(ioutil.Discard, "[Sarama] ", log.LstdFlags)
// StdLogger is used to log error messages.
type StdLogger interface {
Print(v ...interface{})
Printf(format string, v ...interface{})
Println(v ...interface{})
}
// PanicHandler is called for recovering from panics spawned internally to the library (and thus
// not recoverable by the caller's goroutine). Defaults to nil, which means panics are not recovered.
var PanicHandler func(interface{})
// MaxRequestSize is the maximum size (in bytes) of any request that Sarama will attempt to send. Trying
// to send a request larger than this will result in an PacketEncodingError. The default of 100 MiB is aligned
// with Kafka's default `socket.request.max.bytes`, which is the largest request the broker will attempt
// to process.
var MaxRequestSize int32 = 100 * 1024 * 1024
// MaxResponseSize is the maximum size (in bytes) of any response that Sarama will attempt to parse. If
// a broker returns a response message larger than this value, Sarama will return a PacketDecodingError to
// protect the client from running out of memory. Please note that brokers do not have any natural limit on
// the size of responses they send. In particular, they can send arbitrarily large fetch responses to consumers
// (see https://issues.apache.org/jira/browse/KAFKA-2063).
var MaxResponseSize int32 = 100 * 1024 * 1024

View File

@ -0,0 +1,33 @@
package sarama
type SaslHandshakeRequest struct {
Mechanism string
}
func (r *SaslHandshakeRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.Mechanism); err != nil {
return err
}
return nil
}
func (r *SaslHandshakeRequest) decode(pd packetDecoder, version int16) (err error) {
if r.Mechanism, err = pd.getString(); err != nil {
return err
}
return nil
}
func (r *SaslHandshakeRequest) key() int16 {
return 17
}
func (r *SaslHandshakeRequest) version() int16 {
return 0
}
func (r *SaslHandshakeRequest) requiredVersion() KafkaVersion {
return V0_10_0_0
}

View File

@ -0,0 +1,38 @@
package sarama
type SaslHandshakeResponse struct {
Err KError
EnabledMechanisms []string
}
func (r *SaslHandshakeResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
return pe.putStringArray(r.EnabledMechanisms)
}
func (r *SaslHandshakeResponse) decode(pd packetDecoder, version int16) error {
kerr, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(kerr)
if r.EnabledMechanisms, err = pd.getStringArray(); err != nil {
return err
}
return nil
}
func (r *SaslHandshakeResponse) key() int16 {
return 17
}
func (r *SaslHandshakeResponse) version() int16 {
return 0
}
func (r *SaslHandshakeResponse) requiredVersion() KafkaVersion {
return V0_10_0_0
}

100
vendor/github.com/Shopify/sarama/sync_group_request.go generated vendored Normal file
View File

@ -0,0 +1,100 @@
package sarama
type SyncGroupRequest struct {
GroupId string
GenerationId int32
MemberId string
GroupAssignments map[string][]byte
}
func (r *SyncGroupRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
pe.putInt32(r.GenerationId)
if err := pe.putString(r.MemberId); err != nil {
return err
}
if err := pe.putArrayLength(len(r.GroupAssignments)); err != nil {
return err
}
for memberId, memberAssignment := range r.GroupAssignments {
if err := pe.putString(memberId); err != nil {
return err
}
if err := pe.putBytes(memberAssignment); err != nil {
return err
}
}
return nil
}
func (r *SyncGroupRequest) decode(pd packetDecoder, version int16) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.GenerationId, err = pd.getInt32(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.GroupAssignments = make(map[string][]byte)
for i := 0; i < n; i++ {
memberId, err := pd.getString()
if err != nil {
return err
}
memberAssignment, err := pd.getBytes()
if err != nil {
return err
}
r.GroupAssignments[memberId] = memberAssignment
}
return nil
}
func (r *SyncGroupRequest) key() int16 {
return 14
}
func (r *SyncGroupRequest) version() int16 {
return 0
}
func (r *SyncGroupRequest) requiredVersion() KafkaVersion {
return V0_9_0_0
}
func (r *SyncGroupRequest) AddGroupAssignment(memberId string, memberAssignment []byte) {
if r.GroupAssignments == nil {
r.GroupAssignments = make(map[string][]byte)
}
r.GroupAssignments[memberId] = memberAssignment
}
func (r *SyncGroupRequest) AddGroupAssignmentMember(memberId string, memberAssignment *ConsumerGroupMemberAssignment) error {
bin, err := encode(memberAssignment, nil)
if err != nil {
return err
}
r.AddGroupAssignment(memberId, bin)
return nil
}

View File

@ -0,0 +1,41 @@
package sarama
type SyncGroupResponse struct {
Err KError
MemberAssignment []byte
}
func (r *SyncGroupResponse) GetMemberAssignment() (*ConsumerGroupMemberAssignment, error) {
assignment := new(ConsumerGroupMemberAssignment)
err := decode(r.MemberAssignment, assignment)
return assignment, err
}
func (r *SyncGroupResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
return pe.putBytes(r.MemberAssignment)
}
func (r *SyncGroupResponse) decode(pd packetDecoder, version int16) (err error) {
kerr, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(kerr)
r.MemberAssignment, err = pd.getBytes()
return
}
func (r *SyncGroupResponse) key() int16 {
return 14
}
func (r *SyncGroupResponse) version() int16 {
return 0
}
func (r *SyncGroupResponse) requiredVersion() KafkaVersion {
return V0_9_0_0
}

164
vendor/github.com/Shopify/sarama/sync_producer.go generated vendored Normal file
View File

@ -0,0 +1,164 @@
package sarama
import "sync"
// SyncProducer publishes Kafka messages, blocking until they have been acknowledged. It routes messages to the correct
// broker, refreshing metadata as appropriate, and parses responses for errors. You must call Close() on a producer
// to avoid leaks, it may not be garbage-collected automatically when it passes out of scope.
//
// The SyncProducer comes with two caveats: it will generally be less efficient than the AsyncProducer, and the actual
// durability guarantee provided when a message is acknowledged depend on the configured value of `Producer.RequiredAcks`.
// There are configurations where a message acknowledged by the SyncProducer can still sometimes be lost.
//
// For implementation reasons, the SyncProducer requires `Producer.Return.Errors` and `Producer.Return.Successes` to
// be set to true in its configuration.
type SyncProducer interface {
// SendMessage produces a given message, and returns only when it either has
// succeeded or failed to produce. It will return the partition and the offset
// of the produced message, or an error if the message failed to produce.
SendMessage(msg *ProducerMessage) (partition int32, offset int64, err error)
// SendMessages produces a given set of messages, and returns only when all
// messages in the set have either succeeded or failed. Note that messages
// can succeed and fail individually; if some succeed and some fail,
// SendMessages will return an error.
SendMessages(msgs []*ProducerMessage) error
// Close shuts down the producer and waits for any buffered messages to be
// flushed. You must call this function before a producer object passes out of
// scope, as it may otherwise leak memory. You must call this before calling
// Close on the underlying client.
Close() error
}
type syncProducer struct {
producer *asyncProducer
wg sync.WaitGroup
}
// NewSyncProducer creates a new SyncProducer using the given broker addresses and configuration.
func NewSyncProducer(addrs []string, config *Config) (SyncProducer, error) {
if config == nil {
config = NewConfig()
config.Producer.Return.Successes = true
}
if err := verifyProducerConfig(config); err != nil {
return nil, err
}
p, err := NewAsyncProducer(addrs, config)
if err != nil {
return nil, err
}
return newSyncProducerFromAsyncProducer(p.(*asyncProducer)), nil
}
// NewSyncProducerFromClient creates a new SyncProducer using the given client. It is still
// necessary to call Close() on the underlying client when shutting down this producer.
func NewSyncProducerFromClient(client Client) (SyncProducer, error) {
if err := verifyProducerConfig(client.Config()); err != nil {
return nil, err
}
p, err := NewAsyncProducerFromClient(client)
if err != nil {
return nil, err
}
return newSyncProducerFromAsyncProducer(p.(*asyncProducer)), nil
}
func newSyncProducerFromAsyncProducer(p *asyncProducer) *syncProducer {
sp := &syncProducer{producer: p}
sp.wg.Add(2)
go withRecover(sp.handleSuccesses)
go withRecover(sp.handleErrors)
return sp
}
func verifyProducerConfig(config *Config) error {
if !config.Producer.Return.Errors {
return ConfigurationError("Producer.Return.Errors must be true to be used in a SyncProducer")
}
if !config.Producer.Return.Successes {
return ConfigurationError("Producer.Return.Successes must be true to be used in a SyncProducer")
}
return nil
}
func (sp *syncProducer) SendMessage(msg *ProducerMessage) (partition int32, offset int64, err error) {
oldMetadata := msg.Metadata
defer func() {
msg.Metadata = oldMetadata
}()
expectation := make(chan *ProducerError, 1)
msg.Metadata = expectation
sp.producer.Input() <- msg
if err := <-expectation; err != nil {
return -1, -1, err.Err
}
return msg.Partition, msg.Offset, nil
}
func (sp *syncProducer) SendMessages(msgs []*ProducerMessage) error {
savedMetadata := make([]interface{}, len(msgs))
for i := range msgs {
savedMetadata[i] = msgs[i].Metadata
}
defer func() {
for i := range msgs {
msgs[i].Metadata = savedMetadata[i]
}
}()
expectations := make(chan chan *ProducerError, len(msgs))
go func() {
for _, msg := range msgs {
expectation := make(chan *ProducerError, 1)
msg.Metadata = expectation
sp.producer.Input() <- msg
expectations <- expectation
}
close(expectations)
}()
var errors ProducerErrors
for expectation := range expectations {
if err := <-expectation; err != nil {
errors = append(errors, err)
}
}
if len(errors) > 0 {
return errors
}
return nil
}
func (sp *syncProducer) handleSuccesses() {
defer sp.wg.Done()
for msg := range sp.producer.Successes() {
expectation := msg.Metadata.(chan *ProducerError)
expectation <- nil
}
}
func (sp *syncProducer) handleErrors() {
defer sp.wg.Done()
for err := range sp.producer.Errors() {
expectation := err.Msg.Metadata.(chan *ProducerError)
expectation <- err
}
}
func (sp *syncProducer) Close() error {
sp.producer.AsyncClose()
sp.wg.Wait()
return nil
}

40
vendor/github.com/Shopify/sarama/timestamp.go generated vendored Normal file
View File

@ -0,0 +1,40 @@
package sarama
import (
"fmt"
"time"
)
type Timestamp struct {
*time.Time
}
func (t Timestamp) encode(pe packetEncoder) error {
timestamp := int64(-1)
if !t.Before(time.Unix(0, 0)) {
timestamp = t.UnixNano() / int64(time.Millisecond)
} else if !t.IsZero() {
return PacketEncodingError{fmt.Sprintf("invalid timestamp (%v)", t)}
}
pe.putInt64(timestamp)
return nil
}
func (t Timestamp) decode(pd packetDecoder) error {
millis, err := pd.getInt64()
if err != nil {
return err
}
// negative timestamps are invalid, in these cases we should return
// a zero time
timestamp := time.Time{}
if millis >= 0 {
timestamp = time.Unix(millis/1000, (millis%1000)*int64(time.Millisecond))
}
*t.Time = timestamp
return nil
}

184
vendor/github.com/Shopify/sarama/utils.go generated vendored Normal file
View File

@ -0,0 +1,184 @@
package sarama
import (
"bufio"
"fmt"
"net"
"regexp"
)
type none struct{}
// make []int32 sortable so we can sort partition numbers
type int32Slice []int32
func (slice int32Slice) Len() int {
return len(slice)
}
func (slice int32Slice) Less(i, j int) bool {
return slice[i] < slice[j]
}
func (slice int32Slice) Swap(i, j int) {
slice[i], slice[j] = slice[j], slice[i]
}
func dupInt32Slice(input []int32) []int32 {
ret := make([]int32, 0, len(input))
for _, val := range input {
ret = append(ret, val)
}
return ret
}
func withRecover(fn func()) {
defer func() {
handler := PanicHandler
if handler != nil {
if err := recover(); err != nil {
handler(err)
}
}
}()
fn()
}
func safeAsyncClose(b *Broker) {
tmp := b // local var prevents clobbering in goroutine
go withRecover(func() {
if connected, _ := tmp.Connected(); connected {
if err := tmp.Close(); err != nil {
Logger.Println("Error closing broker", tmp.ID(), ":", err)
}
}
})
}
// Encoder is a simple interface for any type that can be encoded as an array of bytes
// in order to be sent as the key or value of a Kafka message. Length() is provided as an
// optimization, and must return the same as len() on the result of Encode().
type Encoder interface {
Encode() ([]byte, error)
Length() int
}
// make strings and byte slices encodable for convenience so they can be used as keys
// and/or values in kafka messages
// StringEncoder implements the Encoder interface for Go strings so that they can be used
// as the Key or Value in a ProducerMessage.
type StringEncoder string
func (s StringEncoder) Encode() ([]byte, error) {
return []byte(s), nil
}
func (s StringEncoder) Length() int {
return len(s)
}
// ByteEncoder implements the Encoder interface for Go byte slices so that they can be used
// as the Key or Value in a ProducerMessage.
type ByteEncoder []byte
func (b ByteEncoder) Encode() ([]byte, error) {
return b, nil
}
func (b ByteEncoder) Length() int {
return len(b)
}
// bufConn wraps a net.Conn with a buffer for reads to reduce the number of
// reads that trigger syscalls.
type bufConn struct {
net.Conn
buf *bufio.Reader
}
func newBufConn(conn net.Conn) *bufConn {
return &bufConn{
Conn: conn,
buf: bufio.NewReader(conn),
}
}
func (bc *bufConn) Read(b []byte) (n int, err error) {
return bc.buf.Read(b)
}
// KafkaVersion instances represent versions of the upstream Kafka broker.
type KafkaVersion struct {
// it's a struct rather than just typing the array directly to make it opaque and stop people
// generating their own arbitrary versions
version [4]uint
}
func newKafkaVersion(major, minor, veryMinor, patch uint) KafkaVersion {
return KafkaVersion{
version: [4]uint{major, minor, veryMinor, patch},
}
}
// IsAtLeast return true if and only if the version it is called on is
// greater than or equal to the version passed in:
// V1.IsAtLeast(V2) // false
// V2.IsAtLeast(V1) // true
func (v KafkaVersion) IsAtLeast(other KafkaVersion) bool {
for i := range v.version {
if v.version[i] > other.version[i] {
return true
} else if v.version[i] < other.version[i] {
return false
}
}
return true
}
// Effective constants defining the supported kafka versions.
var (
V0_8_2_0 = newKafkaVersion(0, 8, 2, 0)
V0_8_2_1 = newKafkaVersion(0, 8, 2, 1)
V0_8_2_2 = newKafkaVersion(0, 8, 2, 2)
V0_9_0_0 = newKafkaVersion(0, 9, 0, 0)
V0_9_0_1 = newKafkaVersion(0, 9, 0, 1)
V0_10_0_0 = newKafkaVersion(0, 10, 0, 0)
V0_10_0_1 = newKafkaVersion(0, 10, 0, 1)
V0_10_1_0 = newKafkaVersion(0, 10, 1, 0)
V0_10_2_0 = newKafkaVersion(0, 10, 2, 0)
V0_11_0_0 = newKafkaVersion(0, 11, 0, 0)
V1_0_0_0 = newKafkaVersion(1, 0, 0, 0)
minVersion = V0_8_2_0
)
func ParseKafkaVersion(s string) (KafkaVersion, error) {
var major, minor, veryMinor, patch uint
var err error
if s[0] == '0' {
err = scanKafkaVersion(s, `^0\.\d+\.\d+\.\d+$`, "0.%d.%d.%d", [3]*uint{&minor, &veryMinor, &patch})
} else {
err = scanKafkaVersion(s, `^\d+\.\d+\.\d+$`, "%d.%d.%d", [3]*uint{&major, &minor, &veryMinor})
}
if err != nil {
return minVersion, err
}
return newKafkaVersion(major, minor, veryMinor, patch), nil
}
func scanKafkaVersion(s string, pattern string, format string, v [3]*uint) error {
if !regexp.MustCompile(pattern).MatchString(s) {
return fmt.Errorf("invalid version `%s`", s)
}
_, err := fmt.Sscanf(s, format, v[0], v[1], v[2])
return err
}
func (v KafkaVersion) String() string {
if v.version[0] == 0 {
return fmt.Sprintf("0.%d.%d.%d", v.version[1], v.version[2], v.version[3])
} else {
return fmt.Sprintf("%d.%d.%d", v.version[0], v.version[1], v.version[2])
}
}

15
vendor/github.com/davecgh/go-spew/LICENSE generated vendored Normal file
View File

@ -0,0 +1,15 @@
ISC License
Copyright (c) 2012-2016 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

152
vendor/github.com/davecgh/go-spew/spew/bypass.go generated vendored Normal file
View File

@ -0,0 +1,152 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is not running on Google App Engine, compiled by GopherJS, and
// "-tags safe" is not added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build !js,!appengine,!safe,!disableunsafe
package spew
import (
"reflect"
"unsafe"
)
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = false
// ptrSize is the size of a pointer on the current arch.
ptrSize = unsafe.Sizeof((*byte)(nil))
)
var (
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the
// internal reflect.Value fields. These values are valid before golang
// commit ecccf07e7f9d which changed the format. The are also valid
// after commit 82f48826c6c7 which changed the format again to mirror
// the original format. Code in the init function updates these offsets
// as necessary.
offsetPtr = ptrSize
offsetScalar = uintptr(0)
offsetFlag = ptrSize * 2
// flagKindWidth and flagKindShift indicate various bits that the
// reflect package uses internally to track kind information.
//
// flagRO indicates whether or not the value field of a reflect.Value is
// read-only.
//
// flagIndir indicates whether the value field of a reflect.Value is
// the actual data or a pointer to the data.
//
// These values are valid before golang commit 90a7c3c86944 which
// changed their positions. Code in the init function updates these
// flags as necessary.
flagKindWidth = uintptr(5)
flagKindShift = flagKindWidth - 1
flagRO = uintptr(1 << 0)
flagIndir = uintptr(1 << 1)
)
func init() {
// Older versions of reflect.Value stored small integers directly in the
// ptr field (which is named val in the older versions). Versions
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named
// scalar for this purpose which unfortunately came before the flag
// field, so the offset of the flag field is different for those
// versions.
//
// This code constructs a new reflect.Value from a known small integer
// and checks if the size of the reflect.Value struct indicates it has
// the scalar field. When it does, the offsets are updated accordingly.
vv := reflect.ValueOf(0xf00)
if unsafe.Sizeof(vv) == (ptrSize * 4) {
offsetScalar = ptrSize * 2
offsetFlag = ptrSize * 3
}
// Commit 90a7c3c86944 changed the flag positions such that the low
// order bits are the kind. This code extracts the kind from the flags
// field and ensures it's the correct type. When it's not, the flag
// order has been changed to the newer format, so the flags are updated
// accordingly.
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag)
upfv := *(*uintptr)(upf)
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift)
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) {
flagKindShift = 0
flagRO = 1 << 5
flagIndir = 1 << 6
// Commit adf9b30e5594 modified the flags to separate the
// flagRO flag into two bits which specifies whether or not the
// field is embedded. This causes flagIndir to move over a bit
// and means that flagRO is the combination of either of the
// original flagRO bit and the new bit.
//
// This code detects the change by extracting what used to be
// the indirect bit to ensure it's set. When it's not, the flag
// order has been changed to the newer format, so the flags are
// updated accordingly.
if upfv&flagIndir == 0 {
flagRO = 3 << 5
flagIndir = 1 << 7
}
}
}
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
// the typical safety restrictions preventing access to unaddressable and
// unexported data. It works by digging the raw pointer to the underlying
// value out of the protected value and generating a new unprotected (unsafe)
// reflect.Value to it.
//
// This allows us to check for implementations of the Stringer and error
// interfaces to be used for pretty printing ordinarily unaddressable and
// inaccessible values such as unexported struct fields.
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) {
indirects := 1
vt := v.Type()
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr)
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag))
if rvf&flagIndir != 0 {
vt = reflect.PtrTo(v.Type())
indirects++
} else if offsetScalar != 0 {
// The value is in the scalar field when it's not one of the
// reference types.
switch vt.Kind() {
case reflect.Uintptr:
case reflect.Chan:
case reflect.Func:
case reflect.Map:
case reflect.Ptr:
case reflect.UnsafePointer:
default:
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) +
offsetScalar)
}
}
pv := reflect.NewAt(vt, upv)
rv = pv
for i := 0; i < indirects; i++ {
rv = rv.Elem()
}
return rv
}

38
vendor/github.com/davecgh/go-spew/spew/bypasssafe.go generated vendored Normal file
View File

@ -0,0 +1,38 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is running on Google App Engine, compiled by GopherJS, or
// "-tags safe" is added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build js appengine safe disableunsafe
package spew
import "reflect"
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = true
)
// unsafeReflectValue typically converts the passed reflect.Value into a one
// that bypasses the typical safety restrictions preventing access to
// unaddressable and unexported data. However, doing this relies on access to
// the unsafe package. This is a stub version which simply returns the passed
// reflect.Value when the unsafe package is not available.
func unsafeReflectValue(v reflect.Value) reflect.Value {
return v
}

341
vendor/github.com/davecgh/go-spew/spew/common.go generated vendored Normal file
View File

@ -0,0 +1,341 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"reflect"
"sort"
"strconv"
)
// Some constants in the form of bytes to avoid string overhead. This mirrors
// the technique used in the fmt package.
var (
panicBytes = []byte("(PANIC=")
plusBytes = []byte("+")
iBytes = []byte("i")
trueBytes = []byte("true")
falseBytes = []byte("false")
interfaceBytes = []byte("(interface {})")
commaNewlineBytes = []byte(",\n")
newlineBytes = []byte("\n")
openBraceBytes = []byte("{")
openBraceNewlineBytes = []byte("{\n")
closeBraceBytes = []byte("}")
asteriskBytes = []byte("*")
colonBytes = []byte(":")
colonSpaceBytes = []byte(": ")
openParenBytes = []byte("(")
closeParenBytes = []byte(")")
spaceBytes = []byte(" ")
pointerChainBytes = []byte("->")
nilAngleBytes = []byte("<nil>")
maxNewlineBytes = []byte("<max depth reached>\n")
maxShortBytes = []byte("<max>")
circularBytes = []byte("<already shown>")
circularShortBytes = []byte("<shown>")
invalidAngleBytes = []byte("<invalid>")
openBracketBytes = []byte("[")
closeBracketBytes = []byte("]")
percentBytes = []byte("%")
precisionBytes = []byte(".")
openAngleBytes = []byte("<")
closeAngleBytes = []byte(">")
openMapBytes = []byte("map[")
closeMapBytes = []byte("]")
lenEqualsBytes = []byte("len=")
capEqualsBytes = []byte("cap=")
)
// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"
// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
if err := recover(); err != nil {
w.Write(panicBytes)
fmt.Fprintf(w, "%v", err)
w.Write(closeParenBytes)
}
}
// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
// We need an interface to check if the type implements the error or
// Stringer interface. However, the reflect package won't give us an
// interface on certain things like unexported struct fields in order
// to enforce visibility rules. We use unsafe, when it's available,
// to bypass these restrictions since this package does not mutate the
// values.
if !v.CanInterface() {
if UnsafeDisabled {
return false
}
v = unsafeReflectValue(v)
}
// Choose whether or not to do error and Stringer interface lookups against
// the base type or a pointer to the base type depending on settings.
// Technically calling one of these methods with a pointer receiver can
// mutate the value, however, types which choose to satisify an error or
// Stringer interface with a pointer receiver should not be mutating their
// state inside these interface methods.
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
v = unsafeReflectValue(v)
}
if v.CanAddr() {
v = v.Addr()
}
// Is it an error or Stringer?
switch iface := v.Interface().(type) {
case error:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.Error()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.Error()))
return true
case fmt.Stringer:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.String()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.String()))
return true
}
return false
}
// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
if val {
w.Write(trueBytes)
} else {
w.Write(falseBytes)
}
}
// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
w.Write([]byte(strconv.FormatInt(val, base)))
}
// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
w.Write([]byte(strconv.FormatUint(val, base)))
}
// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}
// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
r := real(c)
w.Write(openParenBytes)
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
i := imag(c)
if i >= 0 {
w.Write(plusBytes)
}
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
w.Write(iBytes)
w.Write(closeParenBytes)
}
// printHexPtr outputs a uintptr formatted as hexadecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
// Null pointer.
num := uint64(p)
if num == 0 {
w.Write(nilAngleBytes)
return
}
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
buf := make([]byte, 18)
// It's simpler to construct the hex string right to left.
base := uint64(16)
i := len(buf) - 1
for num >= base {
buf[i] = hexDigits[num%base]
num /= base
i--
}
buf[i] = hexDigits[num]
// Add '0x' prefix.
i--
buf[i] = 'x'
i--
buf[i] = '0'
// Strip unused leading bytes.
buf = buf[i:]
w.Write(buf)
}
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
values []reflect.Value
strings []string // either nil or same len and values
cs *ConfigState
}
// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted. It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
vs := &valuesSorter{values: values, cs: cs}
if canSortSimply(vs.values[0].Kind()) {
return vs
}
if !cs.DisableMethods {
vs.strings = make([]string, len(values))
for i := range vs.values {
b := bytes.Buffer{}
if !handleMethods(cs, &b, vs.values[i]) {
vs.strings = nil
break
}
vs.strings[i] = b.String()
}
}
if vs.strings == nil && cs.SpewKeys {
vs.strings = make([]string, len(values))
for i := range vs.values {
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
}
}
return vs
}
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
// This switch parallels valueSortLess, except for the default case.
switch kind {
case reflect.Bool:
return true
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return true
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return true
case reflect.Float32, reflect.Float64:
return true
case reflect.String:
return true
case reflect.Uintptr:
return true
case reflect.Array:
return true
}
return false
}
// Len returns the number of values in the slice. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
return len(s.values)
}
// Swap swaps the values at the passed indices. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
if s.strings != nil {
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
}
}
// valueSortLess returns whether the first value should sort before the second
// value. It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
switch a.Kind() {
case reflect.Bool:
return !a.Bool() && b.Bool()
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return a.Int() < b.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return a.Uint() < b.Uint()
case reflect.Float32, reflect.Float64:
return a.Float() < b.Float()
case reflect.String:
return a.String() < b.String()
case reflect.Uintptr:
return a.Uint() < b.Uint()
case reflect.Array:
// Compare the contents of both arrays.
l := a.Len()
for i := 0; i < l; i++ {
av := a.Index(i)
bv := b.Index(i)
if av.Interface() == bv.Interface() {
continue
}
return valueSortLess(av, bv)
}
}
return a.String() < b.String()
}
// Less returns whether the value at index i should sort before the
// value at index j. It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
if s.strings == nil {
return valueSortLess(s.values[i], s.values[j])
}
return s.strings[i] < s.strings[j]
}
// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer. Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
if len(values) == 0 {
return
}
sort.Sort(newValuesSorter(values, cs))
}

306
vendor/github.com/davecgh/go-spew/spew/config.go generated vendored Normal file
View File

@ -0,0 +1,306 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"os"
)
// ConfigState houses the configuration options used by spew to format and
// display values. There is a global instance, Config, that is used to control
// all top-level Formatter and Dump functionality. Each ConfigState instance
// provides methods equivalent to the top-level functions.
//
// The zero value for ConfigState provides no indentation. You would typically
// want to set it to a space or a tab.
//
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
// with default settings. See the documentation of NewDefaultConfig for default
// values.
type ConfigState struct {
// Indent specifies the string to use for each indentation level. The
// global config instance that all top-level functions use set this to a
// single space by default. If you would like more indentation, you might
// set this to a tab with "\t" or perhaps two spaces with " ".
Indent string
// MaxDepth controls the maximum number of levels to descend into nested
// data structures. The default, 0, means there is no limit.
//
// NOTE: Circular data structures are properly detected, so it is not
// necessary to set this value unless you specifically want to limit deeply
// nested data structures.
MaxDepth int
// DisableMethods specifies whether or not error and Stringer interfaces are
// invoked for types that implement them.
DisableMethods bool
// DisablePointerMethods specifies whether or not to check for and invoke
// error and Stringer interfaces on types which only accept a pointer
// receiver when the current type is not a pointer.
//
// NOTE: This might be an unsafe action since calling one of these methods
// with a pointer receiver could technically mutate the value, however,
// in practice, types which choose to satisify an error or Stringer
// interface with a pointer receiver should not be mutating their state
// inside these interface methods. As a result, this option relies on
// access to the unsafe package, so it will not have any effect when
// running in environments without access to the unsafe package such as
// Google App Engine or with the "safe" build tag specified.
DisablePointerMethods bool
// DisablePointerAddresses specifies whether to disable the printing of
// pointer addresses. This is useful when diffing data structures in tests.
DisablePointerAddresses bool
// DisableCapacities specifies whether to disable the printing of capacities
// for arrays, slices, maps and channels. This is useful when diffing
// data structures in tests.
DisableCapacities bool
// ContinueOnMethod specifies whether or not recursion should continue once
// a custom error or Stringer interface is invoked. The default, false,
// means it will print the results of invoking the custom error or Stringer
// interface and return immediately instead of continuing to recurse into
// the internals of the data type.
//
// NOTE: This flag does not have any effect if method invocation is disabled
// via the DisableMethods or DisablePointerMethods options.
ContinueOnMethod bool
// SortKeys specifies map keys should be sorted before being printed. Use
// this to have a more deterministic, diffable output. Note that only
// native types (bool, int, uint, floats, uintptr and string) and types
// that support the error or Stringer interfaces (if methods are
// enabled) are supported, with other types sorted according to the
// reflect.Value.String() output which guarantees display stability.
SortKeys bool
// SpewKeys specifies that, as a last resort attempt, map keys should
// be spewed to strings and sorted by those strings. This is only
// considered if SortKeys is true.
SpewKeys bool
}
// Config is the active configuration of the top-level functions.
// The configuration can be changed by modifying the contents of spew.Config.
var Config = ConfigState{Indent: " "}
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the formatted string as a value that satisfies error. See NewFormatter
// for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, c.convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, c.convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, c.convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a Formatter interface returned by c.NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, c.convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
return fmt.Print(c.convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, c.convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
return fmt.Println(c.convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprint(a ...interface{}) string {
return fmt.Sprint(c.convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, c.convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a Formatter interface returned by c.NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintln(a ...interface{}) string {
return fmt.Sprintln(c.convertArgs(a)...)
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
c.Printf, c.Println, or c.Printf.
*/
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(c, v)
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
fdump(c, w, a...)
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by modifying the public members
of c. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func (c *ConfigState) Dump(a ...interface{}) {
fdump(c, os.Stdout, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func (c *ConfigState) Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(c, &buf, a...)
return buf.String()
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a spew Formatter interface using
// the ConfigState associated with s.
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = newFormatter(c, arg)
}
return formatters
}
// NewDefaultConfig returns a ConfigState with the following default settings.
//
// Indent: " "
// MaxDepth: 0
// DisableMethods: false
// DisablePointerMethods: false
// ContinueOnMethod: false
// SortKeys: false
func NewDefaultConfig() *ConfigState {
return &ConfigState{Indent: " "}
}

211
vendor/github.com/davecgh/go-spew/spew/doc.go generated vendored Normal file
View File

@ -0,0 +1,211 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
Package spew implements a deep pretty printer for Go data structures to aid in
debugging.
A quick overview of the additional features spew provides over the built-in
printing facilities for Go data types are as follows:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output (only when using
Dump style)
There are two different approaches spew allows for dumping Go data structures:
* Dump style which prints with newlines, customizable indentation,
and additional debug information such as types and all pointer addresses
used to indirect to the final value
* A custom Formatter interface that integrates cleanly with the standard fmt
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
similar to the default %v while providing the additional functionality
outlined above and passing unsupported format verbs such as %x and %q
along to fmt
Quick Start
This section demonstrates how to quickly get started with spew. See the
sections below for further details on formatting and configuration options.
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
%#+v (adds types and pointer addresses):
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available
via the spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
The following configuration options are available:
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables.
Pointer method invocation is enabled by default.
* DisablePointerAddresses
DisablePointerAddresses specifies whether to disable the printing of
pointer addresses. This is useful when diffing data structures in tests.
* DisableCapacities
DisableCapacities specifies whether to disable the printing of
capacities for arrays, slices, maps and channels. This is useful when
diffing data structures in tests.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are
supported with other types sorted according to the
reflect.Value.String() output which guarantees display
stability. Natural map order is used by default.
* SpewKeys
Specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only
considered if SortKeys is true.
Dump Usage
Simply call spew.Dump with a list of variables you want to dump:
spew.Dump(myVar1, myVar2, ...)
You may also call spew.Fdump if you would prefer to output to an arbitrary
io.Writer. For example, to dump to standard error:
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
A third option is to call spew.Sdump to get the formatted output as a string:
str := spew.Sdump(myVar1, myVar2, ...)
Sample Dump Output
See the Dump example for details on the setup of the types and variables being
shown here.
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) (len=1) {
(string) (len=3) "one": (bool) true
}
}
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
command as shown.
([]uint8) (len=32 cap=32) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
Custom Formatter
Spew provides a custom formatter that implements the fmt.Formatter interface
so that it integrates cleanly with standard fmt package printing functions. The
formatter is useful for inline printing of smaller data types similar to the
standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Custom Formatter Usage
The simplest way to make use of the spew custom formatter is to call one of the
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
functions have syntax you are most likely already familiar with:
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Println(myVar, myVar2)
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
See the Index for the full list convenience functions.
Sample Formatter Output
Double pointer to a uint8:
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
Pointer to circular struct with a uint8 field and a pointer to itself:
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
See the Printf example for details on the setup of variables being shown
here.
Errors
Since it is possible for custom Stringer/error interfaces to panic, spew
detects them and handles them internally by printing the panic information
inline with the output. Since spew is intended to provide deep pretty printing
capabilities on structures, it intentionally does not return any errors.
*/
package spew

509
vendor/github.com/davecgh/go-spew/spew/dump.go generated vendored Normal file
View File

@ -0,0 +1,509 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"os"
"reflect"
"regexp"
"strconv"
"strings"
)
var (
// uint8Type is a reflect.Type representing a uint8. It is used to
// convert cgo types to uint8 slices for hexdumping.
uint8Type = reflect.TypeOf(uint8(0))
// cCharRE is a regular expression that matches a cgo char.
// It is used to detect character arrays to hexdump them.
cCharRE = regexp.MustCompile(`^.*\._Ctype_char$`)
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
// char. It is used to detect unsigned character arrays to hexdump
// them.
cUnsignedCharRE = regexp.MustCompile(`^.*\._Ctype_unsignedchar$`)
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
// It is used to detect uint8_t arrays to hexdump them.
cUint8tCharRE = regexp.MustCompile(`^.*\._Ctype_uint8_t$`)
)
// dumpState contains information about the state of a dump operation.
type dumpState struct {
w io.Writer
depth int
pointers map[uintptr]int
ignoreNextType bool
ignoreNextIndent bool
cs *ConfigState
}
// indent performs indentation according to the depth level and cs.Indent
// option.
func (d *dumpState) indent() {
if d.ignoreNextIndent {
d.ignoreNextIndent = false
return
}
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
}
// unpackValue returns values inside of non-nil interfaces when possible.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface && !v.IsNil() {
v = v.Elem()
}
return v
}
// dumpPtr handles formatting of pointers by indirecting them as necessary.
func (d *dumpState) dumpPtr(v reflect.Value) {
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range d.pointers {
if depth >= d.depth {
delete(d.pointers, k)
}
}
// Keep list of all dereferenced pointers to show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by dereferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
cycleFound = true
indirects--
break
}
d.pointers[addr] = d.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type information.
d.w.Write(openParenBytes)
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
d.w.Write([]byte(ve.Type().String()))
d.w.Write(closeParenBytes)
// Display pointer information.
if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 {
d.w.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
d.w.Write(pointerChainBytes)
}
printHexPtr(d.w, addr)
}
d.w.Write(closeParenBytes)
}
// Display dereferenced value.
d.w.Write(openParenBytes)
switch {
case nilFound:
d.w.Write(nilAngleBytes)
case cycleFound:
d.w.Write(circularBytes)
default:
d.ignoreNextType = true
d.dump(ve)
}
d.w.Write(closeParenBytes)
}
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
// reflection) arrays and slices are dumped in hexdump -C fashion.
func (d *dumpState) dumpSlice(v reflect.Value) {
// Determine whether this type should be hex dumped or not. Also,
// for types which should be hexdumped, try to use the underlying data
// first, then fall back to trying to convert them to a uint8 slice.
var buf []uint8
doConvert := false
doHexDump := false
numEntries := v.Len()
if numEntries > 0 {
vt := v.Index(0).Type()
vts := vt.String()
switch {
// C types that need to be converted.
case cCharRE.MatchString(vts):
fallthrough
case cUnsignedCharRE.MatchString(vts):
fallthrough
case cUint8tCharRE.MatchString(vts):
doConvert = true
// Try to use existing uint8 slices and fall back to converting
// and copying if that fails.
case vt.Kind() == reflect.Uint8:
// We need an addressable interface to convert the type
// to a byte slice. However, the reflect package won't
// give us an interface on certain things like
// unexported struct fields in order to enforce
// visibility rules. We use unsafe, when available, to
// bypass these restrictions since this package does not
// mutate the values.
vs := v
if !vs.CanInterface() || !vs.CanAddr() {
vs = unsafeReflectValue(vs)
}
if !UnsafeDisabled {
vs = vs.Slice(0, numEntries)
// Use the existing uint8 slice if it can be
// type asserted.
iface := vs.Interface()
if slice, ok := iface.([]uint8); ok {
buf = slice
doHexDump = true
break
}
}
// The underlying data needs to be converted if it can't
// be type asserted to a uint8 slice.
doConvert = true
}
// Copy and convert the underlying type if needed.
if doConvert && vt.ConvertibleTo(uint8Type) {
// Convert and copy each element into a uint8 byte
// slice.
buf = make([]uint8, numEntries)
for i := 0; i < numEntries; i++ {
vv := v.Index(i)
buf[i] = uint8(vv.Convert(uint8Type).Uint())
}
doHexDump = true
}
}
// Hexdump the entire slice as needed.
if doHexDump {
indent := strings.Repeat(d.cs.Indent, d.depth)
str := indent + hex.Dump(buf)
str = strings.Replace(str, "\n", "\n"+indent, -1)
str = strings.TrimRight(str, d.cs.Indent)
d.w.Write([]byte(str))
return
}
// Recursively call dump for each item.
for i := 0; i < numEntries; i++ {
d.dump(d.unpackValue(v.Index(i)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
// dump is the main workhorse for dumping a value. It uses the passed reflect
// value to figure out what kind of object we are dealing with and formats it
// appropriately. It is a recursive function, however circular data structures
// are detected and handled properly.
func (d *dumpState) dump(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
d.w.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
d.indent()
d.dumpPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !d.ignoreNextType {
d.indent()
d.w.Write(openParenBytes)
d.w.Write([]byte(v.Type().String()))
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
d.ignoreNextType = false
// Display length and capacity if the built-in len and cap functions
// work with the value's kind and the len/cap itself is non-zero.
valueLen, valueCap := 0, 0
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
valueLen, valueCap = v.Len(), v.Cap()
case reflect.Map, reflect.String:
valueLen = v.Len()
}
if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 {
d.w.Write(openParenBytes)
if valueLen != 0 {
d.w.Write(lenEqualsBytes)
printInt(d.w, int64(valueLen), 10)
}
if !d.cs.DisableCapacities && valueCap != 0 {
if valueLen != 0 {
d.w.Write(spaceBytes)
}
d.w.Write(capEqualsBytes)
printInt(d.w, int64(valueCap), 10)
}
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
// Call Stringer/error interfaces if they exist and the handle methods flag
// is enabled
if !d.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(d.cs, d.w, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(d.w, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(d.w, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(d.w, v.Uint(), 10)
case reflect.Float32:
printFloat(d.w, v.Float(), 32)
case reflect.Float64:
printFloat(d.w, v.Float(), 64)
case reflect.Complex64:
printComplex(d.w, v.Complex(), 32)
case reflect.Complex128:
printComplex(d.w, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
d.dumpSlice(v)
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.String:
d.w.Write([]byte(strconv.Quote(v.String())))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
d.w.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
numEntries := v.Len()
keys := v.MapKeys()
if d.cs.SortKeys {
sortValues(keys, d.cs)
}
for i, key := range keys {
d.dump(d.unpackValue(key))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.MapIndex(key)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Struct:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
vt := v.Type()
numFields := v.NumField()
for i := 0; i < numFields; i++ {
d.indent()
vtf := vt.Field(i)
d.w.Write([]byte(vtf.Name))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.Field(i)))
if i < (numFields - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(d.w, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(d.w, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it in case any new
// types are added.
default:
if v.CanInterface() {
fmt.Fprintf(d.w, "%v", v.Interface())
} else {
fmt.Fprintf(d.w, "%v", v.String())
}
}
}
// fdump is a helper function to consolidate the logic from the various public
// methods which take varying writers and config states.
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
for _, arg := range a {
if arg == nil {
w.Write(interfaceBytes)
w.Write(spaceBytes)
w.Write(nilAngleBytes)
w.Write(newlineBytes)
continue
}
d := dumpState{w: w, cs: cs}
d.pointers = make(map[uintptr]int)
d.dump(reflect.ValueOf(arg))
d.w.Write(newlineBytes)
}
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func Fdump(w io.Writer, a ...interface{}) {
fdump(&Config, w, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(&Config, &buf, a...)
return buf.String()
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by an exported package global,
spew.Config. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func Dump(a ...interface{}) {
fdump(&Config, os.Stdout, a...)
}

419
vendor/github.com/davecgh/go-spew/spew/format.go generated vendored Normal file
View File

@ -0,0 +1,419 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
)
// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "
// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation. The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
value interface{}
fs fmt.State
depth int
pointers map[uintptr]int
ignoreNextType bool
cs *ConfigState
}
// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type. Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
buf.WriteRune('v')
format = buf.String()
return format
}
// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package. This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
if width, ok := f.fs.Width(); ok {
buf.WriteString(strconv.Itoa(width))
}
if precision, ok := f.fs.Precision(); ok {
buf.Write(precisionBytes)
buf.WriteString(strconv.Itoa(precision))
}
buf.WriteRune(verb)
format = buf.String()
return format
}
// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface {
f.ignoreNextType = false
if !v.IsNil() {
v = v.Elem()
}
}
return v
}
// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
// Display nil if top level pointer is nil.
showTypes := f.fs.Flag('#')
if v.IsNil() && (!showTypes || f.ignoreNextType) {
f.fs.Write(nilAngleBytes)
return
}
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range f.pointers {
if depth >= f.depth {
delete(f.pointers, k)
}
}
// Keep list of all dereferenced pointers to possibly show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by derferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
cycleFound = true
indirects--
break
}
f.pointers[addr] = f.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type or indirection level depending on flags.
if showTypes && !f.ignoreNextType {
f.fs.Write(openParenBytes)
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
f.fs.Write([]byte(ve.Type().String()))
f.fs.Write(closeParenBytes)
} else {
if nilFound || cycleFound {
indirects += strings.Count(ve.Type().String(), "*")
}
f.fs.Write(openAngleBytes)
f.fs.Write([]byte(strings.Repeat("*", indirects)))
f.fs.Write(closeAngleBytes)
}
// Display pointer information depending on flags.
if f.fs.Flag('+') && (len(pointerChain) > 0) {
f.fs.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
f.fs.Write(pointerChainBytes)
}
printHexPtr(f.fs, addr)
}
f.fs.Write(closeParenBytes)
}
// Display dereferenced value.
switch {
case nilFound:
f.fs.Write(nilAngleBytes)
case cycleFound:
f.fs.Write(circularShortBytes)
default:
f.ignoreNextType = true
f.format(ve)
}
}
// format is the main workhorse for providing the Formatter interface. It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately. It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
f.fs.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
f.formatPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !f.ignoreNextType && f.fs.Flag('#') {
f.fs.Write(openParenBytes)
f.fs.Write([]byte(v.Type().String()))
f.fs.Write(closeParenBytes)
}
f.ignoreNextType = false
// Call Stringer/error interfaces if they exist and the handle methods
// flag is enabled.
if !f.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(f.cs, f.fs, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(f.fs, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(f.fs, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(f.fs, v.Uint(), 10)
case reflect.Float32:
printFloat(f.fs, v.Float(), 32)
case reflect.Float64:
printFloat(f.fs, v.Float(), 64)
case reflect.Complex64:
printComplex(f.fs, v.Complex(), 32)
case reflect.Complex128:
printComplex(f.fs, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
f.fs.Write(openBracketBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
numEntries := v.Len()
for i := 0; i < numEntries; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(v.Index(i)))
}
}
f.depth--
f.fs.Write(closeBracketBytes)
case reflect.String:
f.fs.Write([]byte(v.String()))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
f.fs.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
f.fs.Write(openMapBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
keys := v.MapKeys()
if f.cs.SortKeys {
sortValues(keys, f.cs)
}
for i, key := range keys {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(key))
f.fs.Write(colonBytes)
f.ignoreNextType = true
f.format(f.unpackValue(v.MapIndex(key)))
}
}
f.depth--
f.fs.Write(closeMapBytes)
case reflect.Struct:
numFields := v.NumField()
f.fs.Write(openBraceBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
vt := v.Type()
for i := 0; i < numFields; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
vtf := vt.Field(i)
if f.fs.Flag('+') || f.fs.Flag('#') {
f.fs.Write([]byte(vtf.Name))
f.fs.Write(colonBytes)
}
f.format(f.unpackValue(v.Field(i)))
}
}
f.depth--
f.fs.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(f.fs, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(f.fs, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it if any get added.
default:
format := f.buildDefaultFormat()
if v.CanInterface() {
fmt.Fprintf(f.fs, format, v.Interface())
} else {
fmt.Fprintf(f.fs, format, v.String())
}
}
}
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
f.fs = fs
// Use standard formatting for verbs that are not v.
if verb != 'v' {
format := f.constructOrigFormat(verb)
fmt.Fprintf(fs, format, f.value)
return
}
if f.value == nil {
if fs.Flag('#') {
fs.Write(interfaceBytes)
}
fs.Write(nilAngleBytes)
return
}
f.format(reflect.ValueOf(f.value))
}
// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
fs := &formatState{value: v, cs: cs}
fs.pointers = make(map[uintptr]int)
return fs
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(&Config, v)
}

148
vendor/github.com/davecgh/go-spew/spew/spew.go generated vendored Normal file
View File

@ -0,0 +1,148 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"fmt"
"io"
)
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the formatted string as a value that satisfies error. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a default Formatter interface returned by NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
func Print(a ...interface{}) (n int, err error) {
return fmt.Print(convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
func Println(a ...interface{}) (n int, err error) {
return fmt.Println(convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprint(a ...interface{}) string {
return fmt.Sprint(convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintln(a ...interface{}) string {
return fmt.Sprintln(convertArgs(a)...)
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a default spew Formatter interface.
func convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = NewFormatter(arg)
}
return formatters
}

22
vendor/github.com/eapache/go-resiliency/LICENSE generated vendored Normal file
View File

@ -0,0 +1,22 @@
The MIT License (MIT)
Copyright (c) 2014 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,34 @@
circuit-breaker
===============
[![Build Status](https://travis-ci.org/eapache/go-resiliency.svg?branch=master)](https://travis-ci.org/eapache/go-resiliency)
[![GoDoc](https://godoc.org/github.com/eapache/go-resiliency/breaker?status.svg)](https://godoc.org/github.com/eapache/go-resiliency/breaker)
[![Code of Conduct](https://img.shields.io/badge/code%20of%20conduct-active-blue.svg)](https://eapache.github.io/conduct.html)
The circuit-breaker resiliency pattern for golang.
Creating a breaker takes three parameters:
- error threshold (for opening the breaker)
- success threshold (for closing the breaker)
- timeout (how long to keep the breaker open)
```go
b := breaker.New(3, 1, 5*time.Second)
for {
result := b.Run(func() error {
// communicate with some external service and
// return an error if the communication failed
return nil
})
switch result {
case nil:
// success!
case breaker.ErrBreakerOpen:
// our function wasn't run because the breaker was open
default:
// some other error
}
}
```

View File

@ -0,0 +1,161 @@
// Package breaker implements the circuit-breaker resiliency pattern for Go.
package breaker
import (
"errors"
"sync"
"sync/atomic"
"time"
)
// ErrBreakerOpen is the error returned from Run() when the function is not executed
// because the breaker is currently open.
var ErrBreakerOpen = errors.New("circuit breaker is open")
const (
closed uint32 = iota
open
halfOpen
)
// Breaker implements the circuit-breaker resiliency pattern
type Breaker struct {
errorThreshold, successThreshold int
timeout time.Duration
lock sync.Mutex
state uint32
errors, successes int
lastError time.Time
}
// New constructs a new circuit-breaker that starts closed.
// From closed, the breaker opens if "errorThreshold" errors are seen
// without an error-free period of at least "timeout". From open, the
// breaker half-closes after "timeout". From half-open, the breaker closes
// after "successThreshold" consecutive successes, or opens on a single error.
func New(errorThreshold, successThreshold int, timeout time.Duration) *Breaker {
return &Breaker{
errorThreshold: errorThreshold,
successThreshold: successThreshold,
timeout: timeout,
}
}
// Run will either return ErrBreakerOpen immediately if the circuit-breaker is
// already open, or it will run the given function and pass along its return
// value. It is safe to call Run concurrently on the same Breaker.
func (b *Breaker) Run(work func() error) error {
state := atomic.LoadUint32(&b.state)
if state == open {
return ErrBreakerOpen
}
return b.doWork(state, work)
}
// Go will either return ErrBreakerOpen immediately if the circuit-breaker is
// already open, or it will run the given function in a separate goroutine.
// If the function is run, Go will return nil immediately, and will *not* return
// the return value of the function. It is safe to call Go concurrently on the
// same Breaker.
func (b *Breaker) Go(work func() error) error {
state := atomic.LoadUint32(&b.state)
if state == open {
return ErrBreakerOpen
}
// errcheck complains about ignoring the error return value, but
// that's on purpose; if you want an error from a goroutine you have to
// get it over a channel or something
go b.doWork(state, work)
return nil
}
func (b *Breaker) doWork(state uint32, work func() error) error {
var panicValue interface{}
result := func() error {
defer func() {
panicValue = recover()
}()
return work()
}()
if result == nil && panicValue == nil && state == closed {
// short-circuit the normal, success path without contending
// on the lock
return nil
}
// oh well, I guess we have to contend on the lock
b.processResult(result, panicValue)
if panicValue != nil {
// as close as Go lets us come to a "rethrow" although unfortunately
// we lose the original panicing location
panic(panicValue)
}
return result
}
func (b *Breaker) processResult(result error, panicValue interface{}) {
b.lock.Lock()
defer b.lock.Unlock()
if result == nil && panicValue == nil {
if b.state == halfOpen {
b.successes++
if b.successes == b.successThreshold {
b.closeBreaker()
}
}
} else {
if b.errors > 0 {
expiry := b.lastError.Add(b.timeout)
if time.Now().After(expiry) {
b.errors = 0
}
}
switch b.state {
case closed:
b.errors++
if b.errors == b.errorThreshold {
b.openBreaker()
} else {
b.lastError = time.Now()
}
case halfOpen:
b.openBreaker()
}
}
}
func (b *Breaker) openBreaker() {
b.changeState(open)
go b.timer()
}
func (b *Breaker) closeBreaker() {
b.changeState(closed)
}
func (b *Breaker) timer() {
time.Sleep(b.timeout)
b.lock.Lock()
defer b.lock.Unlock()
b.changeState(halfOpen)
}
func (b *Breaker) changeState(newState uint32) {
b.errors = 0
b.successes = 0
atomic.StoreUint32(&b.state, newState)
}

24
vendor/github.com/eapache/go-xerial-snappy/.gitignore generated vendored Normal file
View File

@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof

View File

@ -0,0 +1,7 @@
language: go
go:
- 1.5.4
- 1.6.1
sudo: false

21
vendor/github.com/eapache/go-xerial-snappy/LICENSE generated vendored Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2016 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

13
vendor/github.com/eapache/go-xerial-snappy/README.md generated vendored Normal file
View File

@ -0,0 +1,13 @@
# go-xerial-snappy
[![Build Status](https://travis-ci.org/eapache/go-xerial-snappy.svg?branch=master)](https://travis-ci.org/eapache/go-xerial-snappy)
Xerial-compatible Snappy framing support for golang.
Packages using Xerial for snappy encoding use a framing format incompatible with
basically everything else in existence. This package wraps Go's built-in snappy
package to support it.
Apps that use this format include Apache Kafka (see
https://github.com/dpkp/kafka-python/issues/126#issuecomment-35478921 for
details).

43
vendor/github.com/eapache/go-xerial-snappy/snappy.go generated vendored Normal file
View File

@ -0,0 +1,43 @@
package snappy
import (
"bytes"
"encoding/binary"
master "github.com/golang/snappy"
)
var xerialHeader = []byte{130, 83, 78, 65, 80, 80, 89, 0}
// Encode encodes data as snappy with no framing header.
func Encode(src []byte) []byte {
return master.Encode(nil, src)
}
// Decode decodes snappy data whether it is traditional unframed
// or includes the xerial framing format.
func Decode(src []byte) ([]byte, error) {
if !bytes.Equal(src[:8], xerialHeader) {
return master.Decode(nil, src)
}
var (
pos = uint32(16)
max = uint32(len(src))
dst = make([]byte, 0, len(src))
chunk []byte
err error
)
for pos < max {
size := binary.BigEndian.Uint32(src[pos : pos+4])
pos += 4
chunk, err = master.Decode(chunk, src[pos:pos+size])
if err != nil {
return nil, err
}
pos += size
dst = append(dst, chunk...)
}
return dst, nil
}

23
vendor/github.com/eapache/queue/.gitignore generated vendored Normal file
View File

@ -0,0 +1,23 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test

7
vendor/github.com/eapache/queue/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,7 @@
language: go
sudo: false
go:
- 1.2
- 1.3
- 1.4

21
vendor/github.com/eapache/queue/LICENSE generated vendored Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

16
vendor/github.com/eapache/queue/README.md generated vendored Normal file
View File

@ -0,0 +1,16 @@
Queue
=====
[![Build Status](https://travis-ci.org/eapache/queue.svg)](https://travis-ci.org/eapache/queue)
[![GoDoc](https://godoc.org/github.com/eapache/queue?status.png)](https://godoc.org/github.com/eapache/queue)
[![Code of Conduct](https://img.shields.io/badge/code%20of%20conduct-active-blue.svg)](https://eapache.github.io/conduct.html)
A fast Golang queue using a ring-buffer, based on the version suggested by Dariusz Górecki.
Using this instead of other, simpler, queue implementations (slice+append or linked list) provides
substantial memory and time benefits, and fewer GC pauses.
The queue implemented here is as fast as it is in part because it is *not* thread-safe.
Follows semantic versioning using https://gopkg.in/ - import from
[`gopkg.in/eapache/queue.v1`](https://gopkg.in/eapache/queue.v1)
for guaranteed API stability.

102
vendor/github.com/eapache/queue/queue.go generated vendored Normal file
View File

@ -0,0 +1,102 @@
/*
Package queue provides a fast, ring-buffer queue based on the version suggested by Dariusz Górecki.
Using this instead of other, simpler, queue implementations (slice+append or linked list) provides
substantial memory and time benefits, and fewer GC pauses.
The queue implemented here is as fast as it is for an additional reason: it is *not* thread-safe.
*/
package queue
// minQueueLen is smallest capacity that queue may have.
// Must be power of 2 for bitwise modulus: x % n == x & (n - 1).
const minQueueLen = 16
// Queue represents a single instance of the queue data structure.
type Queue struct {
buf []interface{}
head, tail, count int
}
// New constructs and returns a new Queue.
func New() *Queue {
return &Queue{
buf: make([]interface{}, minQueueLen),
}
}
// Length returns the number of elements currently stored in the queue.
func (q *Queue) Length() int {
return q.count
}
// resizes the queue to fit exactly twice its current contents
// this can result in shrinking if the queue is less than half-full
func (q *Queue) resize() {
newBuf := make([]interface{}, q.count<<1)
if q.tail > q.head {
copy(newBuf, q.buf[q.head:q.tail])
} else {
n := copy(newBuf, q.buf[q.head:])
copy(newBuf[n:], q.buf[:q.tail])
}
q.head = 0
q.tail = q.count
q.buf = newBuf
}
// Add puts an element on the end of the queue.
func (q *Queue) Add(elem interface{}) {
if q.count == len(q.buf) {
q.resize()
}
q.buf[q.tail] = elem
// bitwise modulus
q.tail = (q.tail + 1) & (len(q.buf) - 1)
q.count++
}
// Peek returns the element at the head of the queue. This call panics
// if the queue is empty.
func (q *Queue) Peek() interface{} {
if q.count <= 0 {
panic("queue: Peek() called on empty queue")
}
return q.buf[q.head]
}
// Get returns the element at index i in the queue. If the index is
// invalid, the call will panic. This method accepts both positive and
// negative index values. Index 0 refers to the first element, and
// index -1 refers to the last.
func (q *Queue) Get(i int) interface{} {
// If indexing backwards, convert to positive index.
if i < 0 {
i += q.count
}
if i < 0 || i >= q.count {
panic("queue: Get() called with index out of range")
}
// bitwise modulus
return q.buf[(q.head+i)&(len(q.buf)-1)]
}
// Remove removes and returns the element from the front of the queue. If the
// queue is empty, the call will panic.
func (q *Queue) Remove() interface{} {
if q.count <= 0 {
panic("queue: Remove() called on empty queue")
}
ret := q.buf[q.head]
q.buf[q.head] = nil
// bitwise modulus
q.head = (q.head + 1) & (len(q.buf) - 1)
q.count--
// Resize down if buffer 1/4 full.
if len(q.buf) > minQueueLen && (q.count<<2) == len(q.buf) {
q.resize()
}
return ret
}

9
vendor/github.com/go-sql-driver/mysql/.gitignore generated vendored Normal file
View File

@ -0,0 +1,9 @@
.DS_Store
.DS_Store?
._*
.Spotlight-V100
.Trashes
Icon?
ehthumbs.db
Thumbs.db
.idea

94
vendor/github.com/go-sql-driver/mysql/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,94 @@
sudo: false
language: go
go:
- 1.5
- 1.6
- 1.7
- 1.8
- 1.9
- tip
before_install:
- go get golang.org/x/tools/cmd/cover
- go get github.com/mattn/goveralls
before_script:
- echo -e "[server]\ninnodb_log_file_size=256MB\ninnodb_buffer_pool_size=512MB\nmax_allowed_packet=16MB" | sudo tee -a /etc/mysql/my.cnf
- sudo service mysql restart
- .travis/wait_mysql.sh
- mysql -e 'create database gotest;'
matrix:
include:
- env: DB=MYSQL57
sudo: required
dist: trusty
go: 1.9
services:
- docker
before_install:
- go get golang.org/x/tools/cmd/cover
- go get github.com/mattn/goveralls
- docker pull mysql:5.7
- docker run -d -p 127.0.0.1:3307:3306 --name mysqld -e MYSQL_DATABASE=gotest -e MYSQL_USER=gotest -e MYSQL_PASSWORD=secret -e MYSQL_ROOT_PASSWORD=verysecret
mysql:5.7 --innodb_log_file_size=256MB --innodb_buffer_pool_size=512MB --max_allowed_packet=16MB
- sleep 30
- cp .travis/docker.cnf ~/.my.cnf
- mysql --print-defaults
- .travis/wait_mysql.sh
before_script:
- export MYSQL_TEST_USER=gotest
- export MYSQL_TEST_PASS=secret
- export MYSQL_TEST_ADDR=127.0.0.1:3307
- export MYSQL_TEST_CONCURRENT=1
- env: DB=MARIA55
sudo: required
dist: trusty
go: 1.9
services:
- docker
before_install:
- go get golang.org/x/tools/cmd/cover
- go get github.com/mattn/goveralls
- docker pull mariadb:5.5
- docker run -d -p 127.0.0.1:3307:3306 --name mysqld -e MYSQL_DATABASE=gotest -e MYSQL_USER=gotest -e MYSQL_PASSWORD=secret -e MYSQL_ROOT_PASSWORD=verysecret
mariadb:5.5 --innodb_log_file_size=256MB --innodb_buffer_pool_size=512MB --max_allowed_packet=16MB
- sleep 30
- cp .travis/docker.cnf ~/.my.cnf
- mysql --print-defaults
- .travis/wait_mysql.sh
before_script:
- export MYSQL_TEST_USER=gotest
- export MYSQL_TEST_PASS=secret
- export MYSQL_TEST_ADDR=127.0.0.1:3307
- export MYSQL_TEST_CONCURRENT=1
- env: DB=MARIA10_1
sudo: required
dist: trusty
go: 1.9
services:
- docker
before_install:
- go get golang.org/x/tools/cmd/cover
- go get github.com/mattn/goveralls
- docker pull mariadb:10.1
- docker run -d -p 127.0.0.1:3307:3306 --name mysqld -e MYSQL_DATABASE=gotest -e MYSQL_USER=gotest -e MYSQL_PASSWORD=secret -e MYSQL_ROOT_PASSWORD=verysecret
mariadb:10.1 --innodb_log_file_size=256MB --innodb_buffer_pool_size=512MB --max_allowed_packet=16MB
- sleep 30
- cp .travis/docker.cnf ~/.my.cnf
- mysql --print-defaults
- .travis/wait_mysql.sh
before_script:
- export MYSQL_TEST_USER=gotest
- export MYSQL_TEST_PASS=secret
- export MYSQL_TEST_ADDR=127.0.0.1:3307
- export MYSQL_TEST_CONCURRENT=1
script:
- go test -v -covermode=count -coverprofile=coverage.out
- go vet ./...
- test -z "$(gofmt -d -s . | tee /dev/stderr)"
after_script:
- $HOME/gopath/bin/goveralls -coverprofile=coverage.out -service=travis-ci

75
vendor/github.com/go-sql-driver/mysql/AUTHORS generated vendored Normal file
View File

@ -0,0 +1,75 @@
# This is the official list of Go-MySQL-Driver authors for copyright purposes.
# If you are submitting a patch, please add your name or the name of the
# organization which holds the copyright to this list in alphabetical order.
# Names should be added to this file as
# Name <email address>
# The email address is not required for organizations.
# Please keep the list sorted.
# Individual Persons
Aaron Hopkins <go-sql-driver at die.net>
Achille Roussel <achille.roussel at gmail.com>
Arne Hormann <arnehormann at gmail.com>
Asta Xie <xiemengjun at gmail.com>
Bulat Gaifullin <gaifullinbf at gmail.com>
Carlos Nieto <jose.carlos at menteslibres.net>
Chris Moos <chris at tech9computers.com>
Daniel Nichter <nil at codenode.com>
Daniël van Eeden <git at myname.nl>
Dave Protasowski <dprotaso at gmail.com>
DisposaBoy <disposaboy at dby.me>
Egor Smolyakov <egorsmkv at gmail.com>
Evan Shaw <evan at vendhq.com>
Frederick Mayle <frederickmayle at gmail.com>
Gustavo Kristic <gkristic at gmail.com>
Hanno Braun <mail at hannobraun.com>
Henri Yandell <flamefew at gmail.com>
Hirotaka Yamamoto <ymmt2005 at gmail.com>
ICHINOSE Shogo <shogo82148 at gmail.com>
INADA Naoki <songofacandy at gmail.com>
Jacek Szwec <szwec.jacek at gmail.com>
James Harr <james.harr at gmail.com>
Jeff Hodges <jeff at somethingsimilar.com>
Jeffrey Charles <jeffreycharles at gmail.com>
Jian Zhen <zhenjl at gmail.com>
Joshua Prunier <joshua.prunier at gmail.com>
Julien Lefevre <julien.lefevr at gmail.com>
Julien Schmidt <go-sql-driver at julienschmidt.com>
Justin Nuß <nuss.justin at gmail.com>
Kamil Dziedzic <kamil at klecza.pl>
Kevin Malachowski <kevin at chowski.com>
Lennart Rudolph <lrudolph at hmc.edu>
Leonardo YongUk Kim <dalinaum at gmail.com>
Lion Yang <lion at aosc.xyz>
Luca Looz <luca.looz92 at gmail.com>
Lucas Liu <extrafliu at gmail.com>
Luke Scott <luke at webconnex.com>
Maciej Zimnoch <maciej.zimnoch@codilime.com>
Michael Woolnough <michael.woolnough at gmail.com>
Nicola Peduzzi <thenikso at gmail.com>
Olivier Mengué <dolmen at cpan.org>
oscarzhao <oscarzhaosl at gmail.com>
Paul Bonser <misterpib at gmail.com>
Peter Schultz <peter.schultz at classmarkets.com>
Rebecca Chin <rchin at pivotal.io>
Runrioter Wung <runrioter at gmail.com>
Shuode Li <elemount at qq.com>
Soroush Pour <me at soroushjp.com>
Stan Putrya <root.vagner at gmail.com>
Stanley Gunawan <gunawan.stanley at gmail.com>
Xiangyu Hu <xiangyu.hu at outlook.com>
Xiaobing Jiang <s7v7nislands at gmail.com>
Xiuming Chen <cc at cxm.cc>
Zhenye Xie <xiezhenye at gmail.com>
# Organizations
Barracuda Networks, Inc.
Google Inc.
Keybase Inc.
Pivotal Inc.
Stripe Inc.

119
vendor/github.com/go-sql-driver/mysql/CHANGELOG.md generated vendored Normal file
View File

@ -0,0 +1,119 @@
## Version 1.3 (2016-12-01)
Changes:
- Go 1.1 is no longer supported
- Use decimals fields in MySQL to format time types (#249)
- Buffer optimizations (#269)
- TLS ServerName defaults to the host (#283)
- Refactoring (#400, #410, #437)
- Adjusted documentation for second generation CloudSQL (#485)
- Documented DSN system var quoting rules (#502)
- Made statement.Close() calls idempotent to avoid errors in Go 1.6+ (#512)
New Features:
- Enable microsecond resolution on TIME, DATETIME and TIMESTAMP (#249)
- Support for returning table alias on Columns() (#289, #359, #382)
- Placeholder interpolation, can be actived with the DSN parameter `interpolateParams=true` (#309, #318, #490)
- Support for uint64 parameters with high bit set (#332, #345)
- Cleartext authentication plugin support (#327)
- Exported ParseDSN function and the Config struct (#403, #419, #429)
- Read / Write timeouts (#401)
- Support for JSON field type (#414)
- Support for multi-statements and multi-results (#411, #431)
- DSN parameter to set the driver-side max_allowed_packet value manually (#489)
- Native password authentication plugin support (#494, #524)
Bugfixes:
- Fixed handling of queries without columns and rows (#255)
- Fixed a panic when SetKeepAlive() failed (#298)
- Handle ERR packets while reading rows (#321)
- Fixed reading NULL length-encoded integers in MySQL 5.6+ (#349)
- Fixed absolute paths support in LOAD LOCAL DATA INFILE (#356)
- Actually zero out bytes in handshake response (#378)
- Fixed race condition in registering LOAD DATA INFILE handler (#383)
- Fixed tests with MySQL 5.7.9+ (#380)
- QueryUnescape TLS config names (#397)
- Fixed "broken pipe" error by writing to closed socket (#390)
- Fixed LOAD LOCAL DATA INFILE buffering (#424)
- Fixed parsing of floats into float64 when placeholders are used (#434)
- Fixed DSN tests with Go 1.7+ (#459)
- Handle ERR packets while waiting for EOF (#473)
- Invalidate connection on error while discarding additional results (#513)
- Allow terminating packets of length 0 (#516)
## Version 1.2 (2014-06-03)
Changes:
- We switched back to a "rolling release". `go get` installs the current master branch again
- Version v1 of the driver will not be maintained anymore. Go 1.0 is no longer supported by this driver
- Exported errors to allow easy checking from application code
- Enabled TCP Keepalives on TCP connections
- Optimized INFILE handling (better buffer size calculation, lazy init, ...)
- The DSN parser also checks for a missing separating slash
- Faster binary date / datetime to string formatting
- Also exported the MySQLWarning type
- mysqlConn.Close returns the first error encountered instead of ignoring all errors
- writePacket() automatically writes the packet size to the header
- readPacket() uses an iterative approach instead of the recursive approach to merge splitted packets
New Features:
- `RegisterDial` allows the usage of a custom dial function to establish the network connection
- Setting the connection collation is possible with the `collation` DSN parameter. This parameter should be preferred over the `charset` parameter
- Logging of critical errors is configurable with `SetLogger`
- Google CloudSQL support
Bugfixes:
- Allow more than 32 parameters in prepared statements
- Various old_password fixes
- Fixed TestConcurrent test to pass Go's race detection
- Fixed appendLengthEncodedInteger for large numbers
- Renamed readLengthEnodedString to readLengthEncodedString and skipLengthEnodedString to skipLengthEncodedString (fixed typo)
## Version 1.1 (2013-11-02)
Changes:
- Go-MySQL-Driver now requires Go 1.1
- Connections now use the collation `utf8_general_ci` by default. Adding `&charset=UTF8` to the DSN should not be necessary anymore
- Made closing rows and connections error tolerant. This allows for example deferring rows.Close() without checking for errors
- `[]byte(nil)` is now treated as a NULL value. Before, it was treated like an empty string / `[]byte("")`
- DSN parameter values must now be url.QueryEscape'ed. This allows text values to contain special characters, such as '&'.
- Use the IO buffer also for writing. This results in zero allocations (by the driver) for most queries
- Optimized the buffer for reading
- stmt.Query now caches column metadata
- New Logo
- Changed the copyright header to include all contributors
- Improved the LOAD INFILE documentation
- The driver struct is now exported to make the driver directly accessible
- Refactored the driver tests
- Added more benchmarks and moved all to a separate file
- Other small refactoring
New Features:
- Added *old_passwords* support: Required in some cases, but must be enabled by adding `allowOldPasswords=true` to the DSN since it is insecure
- Added a `clientFoundRows` parameter: Return the number of matching rows instead of the number of rows changed on UPDATEs
- Added TLS/SSL support: Use a TLS/SSL encrypted connection to the server. Custom TLS configs can be registered and used
Bugfixes:
- Fixed MySQL 4.1 support: MySQL 4.1 sends packets with lengths which differ from the specification
- Convert to DB timezone when inserting `time.Time`
- Splitted packets (more than 16MB) are now merged correctly
- Fixed false positive `io.EOF` errors when the data was fully read
- Avoid panics on reuse of closed connections
- Fixed empty string producing false nil values
- Fixed sign byte for positive TIME fields
## Version 1.0 (2013-05-14)
Initial Release

23
vendor/github.com/go-sql-driver/mysql/CONTRIBUTING.md generated vendored Normal file
View File

@ -0,0 +1,23 @@
# Contributing Guidelines
## Reporting Issues
Before creating a new Issue, please check first if a similar Issue [already exists](https://github.com/go-sql-driver/mysql/issues?state=open) or was [recently closed](https://github.com/go-sql-driver/mysql/issues?direction=desc&page=1&sort=updated&state=closed).
## Contributing Code
By contributing to this project, you share your code under the Mozilla Public License 2, as specified in the LICENSE file.
Don't forget to add yourself to the AUTHORS file.
### Code Review
Everyone is invited to review and comment on pull requests.
If it looks fine to you, comment with "LGTM" (Looks good to me).
If changes are required, notice the reviewers with "PTAL" (Please take another look) after committing the fixes.
Before merging the Pull Request, at least one [team member](https://github.com/go-sql-driver?tab=members) must have commented with "LGTM".
## Development Ideas
If you are looking for ideas for code contributions, please check our [Development Ideas](https://github.com/go-sql-driver/mysql/wiki/Development-Ideas) Wiki page.

373
vendor/github.com/go-sql-driver/mysql/LICENSE generated vendored Normal file
View File

@ -0,0 +1,373 @@
Mozilla Public License Version 2.0
==================================
1. Definitions
--------------
1.1. "Contributor"
means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.
1.5. "Incompatible With Secondary Licenses"
means
(a) that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or
(b) that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.
1.10. "Modifications"
means any of the following:
(a) any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or
(b) any new file in Source Code Form that contains any Covered
Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, "control" means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.
2. License Grants and Conditions
--------------------------------
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
(b) under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
(a) for any code that a Contributor has removed from Covered Software;
or
(b) for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
(c) under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.
3. Responsibilities
-------------------
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
(a) such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and
(b) You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
---------------------------------------------------
If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.
5. Termination
--------------
5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.
************************************************************************
* *
* 6. Disclaimer of Warranty *
* ------------------------- *
* *
* Covered Software is provided under this License on an "as is" *
* basis, without warranty of any kind, either expressed, implied, or *
* statutory, including, without limitation, warranties that the *
* Covered Software is free of defects, merchantable, fit for a *
* particular purpose or non-infringing. The entire risk as to the *
* quality and performance of the Covered Software is with You. *
* Should any Covered Software prove defective in any respect, You *
* (not any Contributor) assume the cost of any necessary servicing, *
* repair, or correction. This disclaimer of warranty constitutes an *
* essential part of this License. No use of any Covered Software is *
* authorized under this License except under this disclaimer. *
* *
************************************************************************
************************************************************************
* *
* 7. Limitation of Liability *
* -------------------------- *
* *
* Under no circumstances and under no legal theory, whether tort *
* (including negligence), contract, or otherwise, shall any *
* Contributor, or anyone who distributes Covered Software as *
* permitted above, be liable to You for any direct, indirect, *
* special, incidental, or consequential damages of any character *
* including, without limitation, damages for lost profits, loss of *
* goodwill, work stoppage, computer failure or malfunction, or any *
* and all other commercial damages or losses, even if such party *
* shall have been informed of the possibility of such damages. This *
* limitation of liability shall not apply to liability for death or *
* personal injury resulting from such party's negligence to the *
* extent applicable law prohibits such limitation. Some *
* jurisdictions do not allow the exclusion or limitation of *
* incidental or consequential damages, so this exclusion and *
* limitation may not apply to You. *
* *
************************************************************************
8. Litigation
-------------
Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party's ability to bring
cross-claims or counter-claims.
9. Miscellaneous
----------------
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.
10. Versions of the License
---------------------------
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
-------------------------------------------
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
---------------------------------------------------------
This Source Code Form is "Incompatible With Secondary Licenses", as
defined by the Mozilla Public License, v. 2.0.

476
vendor/github.com/go-sql-driver/mysql/README.md generated vendored Normal file
View File

@ -0,0 +1,476 @@
# Go-MySQL-Driver
A MySQL-Driver for Go's [database/sql](https://golang.org/pkg/database/sql/) package
![Go-MySQL-Driver logo](https://raw.github.com/wiki/go-sql-driver/mysql/gomysql_m.png "Golang Gopher holding the MySQL Dolphin")
---------------------------------------
* [Features](#features)
* [Requirements](#requirements)
* [Installation](#installation)
* [Usage](#usage)
* [DSN (Data Source Name)](#dsn-data-source-name)
* [Password](#password)
* [Protocol](#protocol)
* [Address](#address)
* [Parameters](#parameters)
* [Examples](#examples)
* [Connection pool and timeouts](#connection-pool-and-timeouts)
* [context.Context Support](#contextcontext-support)
* [ColumnType Support](#columntype-support)
* [LOAD DATA LOCAL INFILE support](#load-data-local-infile-support)
* [time.Time support](#timetime-support)
* [Unicode support](#unicode-support)
* [Testing / Development](#testing--development)
* [License](#license)
---------------------------------------
## Features
* Lightweight and [fast](https://github.com/go-sql-driver/sql-benchmark "golang MySQL-Driver performance")
* Native Go implementation. No C-bindings, just pure Go
* Connections over TCP/IPv4, TCP/IPv6, Unix domain sockets or [custom protocols](https://godoc.org/github.com/go-sql-driver/mysql#DialFunc)
* Automatic handling of broken connections
* Automatic Connection Pooling *(by database/sql package)*
* Supports queries larger than 16MB
* Full [`sql.RawBytes`](https://golang.org/pkg/database/sql/#RawBytes) support.
* Intelligent `LONG DATA` handling in prepared statements
* Secure `LOAD DATA LOCAL INFILE` support with file Whitelisting and `io.Reader` support
* Optional `time.Time` parsing
* Optional placeholder interpolation
## Requirements
* Go 1.5 or higher
* MySQL (4.1+), MariaDB, Percona Server, Google CloudSQL or Sphinx (2.2.3+)
---------------------------------------
## Installation
Simple install the package to your [$GOPATH](https://github.com/golang/go/wiki/GOPATH "GOPATH") with the [go tool](https://golang.org/cmd/go/ "go command") from shell:
```bash
$ go get -u github.com/go-sql-driver/mysql
```
Make sure [Git is installed](https://git-scm.com/downloads) on your machine and in your system's `PATH`.
## Usage
_Go MySQL Driver_ is an implementation of Go's `database/sql/driver` interface. You only need to import the driver and can use the full [`database/sql`](https://golang.org/pkg/database/sql/) API then.
Use `mysql` as `driverName` and a valid [DSN](#dsn-data-source-name) as `dataSourceName`:
```go
import "database/sql"
import _ "github.com/go-sql-driver/mysql"
db, err := sql.Open("mysql", "user:password@/dbname")
```
[Examples are available in our Wiki](https://github.com/go-sql-driver/mysql/wiki/Examples "Go-MySQL-Driver Examples").
### DSN (Data Source Name)
The Data Source Name has a common format, like e.g. [PEAR DB](http://pear.php.net/manual/en/package.database.db.intro-dsn.php) uses it, but without type-prefix (optional parts marked by squared brackets):
```
[username[:password]@][protocol[(address)]]/dbname[?param1=value1&...&paramN=valueN]
```
A DSN in its fullest form:
```
username:password@protocol(address)/dbname?param=value
```
Except for the databasename, all values are optional. So the minimal DSN is:
```
/dbname
```
If you do not want to preselect a database, leave `dbname` empty:
```
/
```
This has the same effect as an empty DSN string:
```
```
Alternatively, [Config.FormatDSN](https://godoc.org/github.com/go-sql-driver/mysql#Config.FormatDSN) can be used to create a DSN string by filling a struct.
#### Password
Passwords can consist of any character. Escaping is **not** necessary.
#### Protocol
See [net.Dial](https://golang.org/pkg/net/#Dial) for more information which networks are available.
In general you should use an Unix domain socket if available and TCP otherwise for best performance.
#### Address
For TCP and UDP networks, addresses have the form `host[:port]`.
If `port` is omitted, the default port will be used.
If `host` is a literal IPv6 address, it must be enclosed in square brackets.
The functions [net.JoinHostPort](https://golang.org/pkg/net/#JoinHostPort) and [net.SplitHostPort](https://golang.org/pkg/net/#SplitHostPort) manipulate addresses in this form.
For Unix domain sockets the address is the absolute path to the MySQL-Server-socket, e.g. `/var/run/mysqld/mysqld.sock` or `/tmp/mysql.sock`.
#### Parameters
*Parameters are case-sensitive!*
Notice that any of `true`, `TRUE`, `True` or `1` is accepted to stand for a true boolean value. Not surprisingly, false can be specified as any of: `false`, `FALSE`, `False` or `0`.
##### `allowAllFiles`
```
Type: bool
Valid Values: true, false
Default: false
```
`allowAllFiles=true` disables the file Whitelist for `LOAD DATA LOCAL INFILE` and allows *all* files.
[*Might be insecure!*](http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html)
##### `allowCleartextPasswords`
```
Type: bool
Valid Values: true, false
Default: false
```
`allowCleartextPasswords=true` allows using the [cleartext client side plugin](http://dev.mysql.com/doc/en/cleartext-authentication-plugin.html) if required by an account, such as one defined with the [PAM authentication plugin](http://dev.mysql.com/doc/en/pam-authentication-plugin.html). Sending passwords in clear text may be a security problem in some configurations. To avoid problems if there is any possibility that the password would be intercepted, clients should connect to MySQL Server using a method that protects the password. Possibilities include [TLS / SSL](#tls), IPsec, or a private network.
##### `allowNativePasswords`
```
Type: bool
Valid Values: true, false
Default: true
```
`allowNativePasswords=false` disallows the usage of MySQL native password method.
##### `allowOldPasswords`
```
Type: bool
Valid Values: true, false
Default: false
```
`allowOldPasswords=true` allows the usage of the insecure old password method. This should be avoided, but is necessary in some cases. See also [the old_passwords wiki page](https://github.com/go-sql-driver/mysql/wiki/old_passwords).
##### `charset`
```
Type: string
Valid Values: <name>
Default: none
```
Sets the charset used for client-server interaction (`"SET NAMES <value>"`). If multiple charsets are set (separated by a comma), the following charset is used if setting the charset failes. This enables for example support for `utf8mb4` ([introduced in MySQL 5.5.3](http://dev.mysql.com/doc/refman/5.5/en/charset-unicode-utf8mb4.html)) with fallback to `utf8` for older servers (`charset=utf8mb4,utf8`).
Usage of the `charset` parameter is discouraged because it issues additional queries to the server.
Unless you need the fallback behavior, please use `collation` instead.
##### `collation`
```
Type: string
Valid Values: <name>
Default: utf8_general_ci
```
Sets the collation used for client-server interaction on connection. In contrast to `charset`, `collation` does not issue additional queries. If the specified collation is unavailable on the target server, the connection will fail.
A list of valid charsets for a server is retrievable with `SHOW COLLATION`.
##### `clientFoundRows`
```
Type: bool
Valid Values: true, false
Default: false
```
`clientFoundRows=true` causes an UPDATE to return the number of matching rows instead of the number of rows changed.
##### `columnsWithAlias`
```
Type: bool
Valid Values: true, false
Default: false
```
When `columnsWithAlias` is true, calls to `sql.Rows.Columns()` will return the table alias and the column name separated by a dot. For example:
```
SELECT u.id FROM users as u
```
will return `u.id` instead of just `id` if `columnsWithAlias=true`.
##### `interpolateParams`
```
Type: bool
Valid Values: true, false
Default: false
```
If `interpolateParams` is true, placeholders (`?`) in calls to `db.Query()` and `db.Exec()` are interpolated into a single query string with given parameters. This reduces the number of roundtrips, since the driver has to prepare a statement, execute it with given parameters and close the statement again with `interpolateParams=false`.
*This can not be used together with the multibyte encodings BIG5, CP932, GB2312, GBK or SJIS. These are blacklisted as they may [introduce a SQL injection vulnerability](http://stackoverflow.com/a/12118602/3430118)!*
##### `loc`
```
Type: string
Valid Values: <escaped name>
Default: UTC
```
Sets the location for time.Time values (when using `parseTime=true`). *"Local"* sets the system's location. See [time.LoadLocation](https://golang.org/pkg/time/#LoadLocation) for details.
Note that this sets the location for time.Time values but does not change MySQL's [time_zone setting](https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html). For that see the [time_zone system variable](#system-variables), which can also be set as a DSN parameter.
Please keep in mind, that param values must be [url.QueryEscape](https://golang.org/pkg/net/url/#QueryEscape)'ed. Alternatively you can manually replace the `/` with `%2F`. For example `US/Pacific` would be `loc=US%2FPacific`.
##### `maxAllowedPacket`
```
Type: decimal number
Default: 4194304
```
Max packet size allowed in bytes. The default value is 4 MiB and should be adjusted to match the server settings. `maxAllowedPacket=0` can be used to automatically fetch the `max_allowed_packet` variable from server *on every connection*.
##### `multiStatements`
```
Type: bool
Valid Values: true, false
Default: false
```
Allow multiple statements in one query. While this allows batch queries, it also greatly increases the risk of SQL injections. Only the result of the first query is returned, all other results are silently discarded.
When `multiStatements` is used, `?` parameters must only be used in the first statement.
##### `parseTime`
```
Type: bool
Valid Values: true, false
Default: false
```
`parseTime=true` changes the output type of `DATE` and `DATETIME` values to `time.Time` instead of `[]byte` / `string`
##### `readTimeout`
```
Type: duration
Default: 0
```
I/O read timeout. The value must be a decimal number with a unit suffix (*"ms"*, *"s"*, *"m"*, *"h"*), such as *"30s"*, *"0.5m"* or *"1m30s"*.
##### `rejectReadOnly`
```
Type: bool
Valid Values: true, false
Default: false
```
`rejectReadOnly=true` causes the driver to reject read-only connections. This
is for a possible race condition during an automatic failover, where the mysql
client gets connected to a read-only replica after the failover.
Note that this should be a fairly rare case, as an automatic failover normally
happens when the primary is down, and the race condition shouldn't happen
unless it comes back up online as soon as the failover is kicked off. On the
other hand, when this happens, a MySQL application can get stuck on a
read-only connection until restarted. It is however fairly easy to reproduce,
for example, using a manual failover on AWS Aurora's MySQL-compatible cluster.
If you are not relying on read-only transactions to reject writes that aren't
supposed to happen, setting this on some MySQL providers (such as AWS Aurora)
is safer for failovers.
Note that ERROR 1290 can be returned for a `read-only` server and this option will
cause a retry for that error. However the same error number is used for some
other cases. You should ensure your application will never cause an ERROR 1290
except for `read-only` mode when enabling this option.
##### `timeout`
```
Type: duration
Default: OS default
```
Timeout for establishing connections, aka dial timeout. The value must be a decimal number with a unit suffix (*"ms"*, *"s"*, *"m"*, *"h"*), such as *"30s"*, *"0.5m"* or *"1m30s"*.
##### `tls`
```
Type: bool / string
Valid Values: true, false, skip-verify, <name>
Default: false
```
`tls=true` enables TLS / SSL encrypted connection to the server. Use `skip-verify` if you want to use a self-signed or invalid certificate (server side). Use a custom value registered with [`mysql.RegisterTLSConfig`](https://godoc.org/github.com/go-sql-driver/mysql#RegisterTLSConfig).
##### `writeTimeout`
```
Type: duration
Default: 0
```
I/O write timeout. The value must be a decimal number with a unit suffix (*"ms"*, *"s"*, *"m"*, *"h"*), such as *"30s"*, *"0.5m"* or *"1m30s"*.
##### System Variables
Any other parameters are interpreted as system variables:
* `<boolean_var>=<value>`: `SET <boolean_var>=<value>`
* `<enum_var>=<value>`: `SET <enum_var>=<value>`
* `<string_var>=%27<value>%27`: `SET <string_var>='<value>'`
Rules:
* The values for string variables must be quoted with `'`.
* The values must also be [url.QueryEscape](http://golang.org/pkg/net/url/#QueryEscape)'ed!
(which implies values of string variables must be wrapped with `%27`).
Examples:
* `autocommit=1`: `SET autocommit=1`
* [`time_zone=%27Europe%2FParis%27`](https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html): `SET time_zone='Europe/Paris'`
* [`tx_isolation=%27REPEATABLE-READ%27`](https://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_tx_isolation): `SET tx_isolation='REPEATABLE-READ'`
#### Examples
```
user@unix(/path/to/socket)/dbname
```
```
root:pw@unix(/tmp/mysql.sock)/myDatabase?loc=Local
```
```
user:password@tcp(localhost:5555)/dbname?tls=skip-verify&autocommit=true
```
Treat warnings as errors by setting the system variable [`sql_mode`](https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html):
```
user:password@/dbname?sql_mode=TRADITIONAL
```
TCP via IPv6:
```
user:password@tcp([de:ad:be:ef::ca:fe]:80)/dbname?timeout=90s&collation=utf8mb4_unicode_ci
```
TCP on a remote host, e.g. Amazon RDS:
```
id:password@tcp(your-amazonaws-uri.com:3306)/dbname
```
Google Cloud SQL on App Engine (First Generation MySQL Server):
```
user@cloudsql(project-id:instance-name)/dbname
```
Google Cloud SQL on App Engine (Second Generation MySQL Server):
```
user@cloudsql(project-id:regionname:instance-name)/dbname
```
TCP using default port (3306) on localhost:
```
user:password@tcp/dbname?charset=utf8mb4,utf8&sys_var=esc%40ped
```
Use the default protocol (tcp) and host (localhost:3306):
```
user:password@/dbname
```
No Database preselected:
```
user:password@/
```
### Connection pool and timeouts
The connection pool is managed by Go's database/sql package. For details on how to configure the size of the pool and how long connections stay in the pool see `*DB.SetMaxOpenConns`, `*DB.SetMaxIdleConns`, and `*DB.SetConnMaxLifetime` in the [database/sql documentation](https://golang.org/pkg/database/sql/). The read, write, and dial timeouts for each individual connection are configured with the DSN parameters [`readTimeout`](#readtimeout), [`writeTimeout`](#writetimeout), and [`timeout`](#timeout), respectively.
## `ColumnType` Support
This driver supports the [`ColumnType` interface](https://golang.org/pkg/database/sql/#ColumnType) introduced in Go 1.8, with the exception of [`ColumnType.Length()`](https://golang.org/pkg/database/sql/#ColumnType.Length), which is currently not supported.
## `context.Context` Support
Go 1.8 added `database/sql` support for `context.Context`. This driver supports query timeouts and cancellation via contexts.
See [context support in the database/sql package](https://golang.org/doc/go1.8#database_sql) for more details.
### `LOAD DATA LOCAL INFILE` support
For this feature you need direct access to the package. Therefore you must change the import path (no `_`):
```go
import "github.com/go-sql-driver/mysql"
```
Files must be whitelisted by registering them with `mysql.RegisterLocalFile(filepath)` (recommended) or the Whitelist check must be deactivated by using the DSN parameter `allowAllFiles=true` ([*Might be insecure!*](http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html)).
To use a `io.Reader` a handler function must be registered with `mysql.RegisterReaderHandler(name, handler)` which returns a `io.Reader` or `io.ReadCloser`. The Reader is available with the filepath `Reader::<name>` then. Choose different names for different handlers and `DeregisterReaderHandler` when you don't need it anymore.
See the [godoc of Go-MySQL-Driver](https://godoc.org/github.com/go-sql-driver/mysql "golang mysql driver documentation") for details.
### `time.Time` support
The default internal output type of MySQL `DATE` and `DATETIME` values is `[]byte` which allows you to scan the value into a `[]byte`, `string` or `sql.RawBytes` variable in your program.
However, many want to scan MySQL `DATE` and `DATETIME` values into `time.Time` variables, which is the logical opposite in Go to `DATE` and `DATETIME` in MySQL. You can do that by changing the internal output type from `[]byte` to `time.Time` with the DSN parameter `parseTime=true`. You can set the default [`time.Time` location](https://golang.org/pkg/time/#Location) with the `loc` DSN parameter.
**Caution:** As of Go 1.1, this makes `time.Time` the only variable type you can scan `DATE` and `DATETIME` values into. This breaks for example [`sql.RawBytes` support](https://github.com/go-sql-driver/mysql/wiki/Examples#rawbytes).
Alternatively you can use the [`NullTime`](https://godoc.org/github.com/go-sql-driver/mysql#NullTime) type as the scan destination, which works with both `time.Time` and `string` / `[]byte`.
### Unicode support
Since version 1.1 Go-MySQL-Driver automatically uses the collation `utf8_general_ci` by default.
Other collations / charsets can be set using the [`collation`](#collation) DSN parameter.
Version 1.0 of the driver recommended adding `&charset=utf8` (alias for `SET NAMES utf8`) to the DSN to enable proper UTF-8 support. This is not necessary anymore. The [`collation`](#collation) parameter should be preferred to set another collation / charset than the default.
See http://dev.mysql.com/doc/refman/5.7/en/charset-unicode.html for more details on MySQL's Unicode support.
## Testing / Development
To run the driver tests you may need to adjust the configuration. See the [Testing Wiki-Page](https://github.com/go-sql-driver/mysql/wiki/Testing "Testing") for details.
Go-MySQL-Driver is not feature-complete yet. Your help is very appreciated.
If you want to contribute, you can work on an [open issue](https://github.com/go-sql-driver/mysql/issues?state=open) or review a [pull request](https://github.com/go-sql-driver/mysql/pulls).
See the [Contribution Guidelines](https://github.com/go-sql-driver/mysql/blob/master/CONTRIBUTING.md) for details.
---------------------------------------
## License
Go-MySQL-Driver is licensed under the [Mozilla Public License Version 2.0](https://raw.github.com/go-sql-driver/mysql/master/LICENSE)
Mozilla summarizes the license scope as follows:
> MPL: The copyleft applies to any files containing MPLed code.
That means:
* You can **use** the **unchanged** source code both in private and commercially.
* When distributing, you **must publish** the source code of any **changed files** licensed under the MPL 2.0 under a) the MPL 2.0 itself or b) a compatible license (e.g. GPL 3.0 or Apache License 2.0).
* You **needn't publish** the source code of your library as long as the files licensed under the MPL 2.0 are **unchanged**.
Please read the [MPL 2.0 FAQ](https://www.mozilla.org/en-US/MPL/2.0/FAQ/) if you have further questions regarding the license.
You can read the full terms here: [LICENSE](https://raw.github.com/go-sql-driver/mysql/master/LICENSE).
![Go Gopher and MySQL Dolphin](https://raw.github.com/wiki/go-sql-driver/mysql/go-mysql-driver_m.jpg "Golang Gopher transporting the MySQL Dolphin in a wheelbarrow")

Some files were not shown because too many files have changed in this diff Show More