This commit is contained in:
wasd 2018-09-25 14:13:45 +08:00
commit 3b4d8613fa
14 changed files with 2171 additions and 0 deletions

3
README.md Normal file
View File

@ -0,0 +1,3 @@
# go-sniffer
Testing...

758
core/assembly.go Normal file
View File

@ -0,0 +1,758 @@
// Copyright (C) MongoDB, Inc. 2014-present.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
package core
import (
"fmt"
"log"
"sync"
"time"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
"github.com/google/gopacket/tcpassembly"
)
var memLog = new(bool)
var debugLog = new(bool)
const invalidSequence = -1
const uint32Max = 0xFFFFFFFF
// Sequence is a TCP sequence number. It provides a few convenience functions
// for handling TCP wrap-around. The sequence should always be in the range
// [0,0xFFFFFFFF]... its other bits are simply used in wrap-around calculations
// and should never be set.
type Sequence int64
// Difference defines an ordering for comparing TCP sequences that's safe for
// roll-overs. It returns:
// > 0 : if t comes after s
// < 0 : if t comes before s
// 0 : if t == s
// The number returned is the sequence difference, so 4.Difference(8) will
// return 4.
//
// It handles rollovers by considering any sequence in the first quarter of the
// uint32 space to be after any sequence in the last quarter of that space, thus
// wrapping the uint32 space.
func (s Sequence) Difference(t Sequence) int {
if s > uint32Max-uint32Max/4 && t < uint32Max/4 {
t += uint32Max
} else if t > uint32Max-uint32Max/4 && s < uint32Max/4 {
s += uint32Max
}
return int(t - s)
}
// Add adds an integer to a sequence and returns the resulting sequence.
func (s Sequence) Add(t int) Sequence {
return (s + Sequence(t)) & uint32Max
}
// Reassembly objects are passed by an Assembler into Streams using the
// Reassembled call. Callers should not need to create these structs themselves
// except for testing.
type Reassembly struct {
// Bytes is the next set of bytes in the stream. May be empty.
Bytes []byte
// Skip is set to non-zero if bytes were skipped between this and the last
// Reassembly. If this is the first packet in a connection and we didn't
// see the start, we have no idea how many bytes we skipped, so we set it to
// -1. Otherwise, it's set to the number of bytes skipped.
Skip int
// Start is set if this set of bytes has a TCP SYN accompanying it.
Start bool
// End is set if this set of bytes has a TCP FIN or RST accompanying it.
End bool
// Seen is the timestamp this set of bytes was pulled off the wire.
Seen time.Time
}
const pageBytes = 1900
// page is used to store TCP data we're not ready for yet (out-of-order
// packets). Unused pages are stored in and returned from a pageCache, which
// avoids memory allocation. Used pages are stored in a doubly-linked list in a
// connection.
type page struct {
tcpassembly.Reassembly
seq Sequence
index int
prev, next *page
buf [pageBytes]byte
}
// pageCache is a concurrency-unsafe store of page objects we use to avoid
// memory allocation as much as we can. It grows but never shrinks.
type pageCache struct {
free []*page
pcSize int
size, used int
pages [][]page
pageRequests int64
}
const initialAllocSize = 1024
func newPageCache() *pageCache {
pc := &pageCache{
free: make([]*page, 0, initialAllocSize),
pcSize: initialAllocSize,
}
pc.grow()
return pc
}
// grow exponentially increases the size of our page cache as much as necessary.
func (c *pageCache) grow() {
pages := make([]page, c.pcSize)
c.pages = append(c.pages, pages)
c.size += c.pcSize
for i := range pages {
c.free = append(c.free, &pages[i])
}
if *memLog {
log.Println("PageCache: created", c.pcSize, "new pages")
}
c.pcSize *= 2
}
// next returns a clean, ready-to-use page object.
func (c *pageCache) next(ts time.Time) (p *page) {
if *memLog {
c.pageRequests++
if c.pageRequests&0xFFFF == 0 {
log.Println("PageCache:", c.pageRequests, "requested,", c.used, "used,", len(c.free), "free")
}
}
if len(c.free) == 0 {
c.grow()
}
i := len(c.free) - 1
p, c.free = c.free[i], c.free[:i]
p.prev = nil
p.next = nil
p.Seen = ts
p.Bytes = p.buf[:0]
c.used++
return p
}
// replace replaces a page into the pageCache.
func (c *pageCache) replace(p *page) {
c.used--
c.free = append(c.free, p)
}
// Stream is implemented by the caller to handle incoming reassembled TCP data.
// Callers create a StreamFactory, then StreamPool uses it to create a new
// Stream for every TCP stream.
//
// assembly will, in order:
// 1) Create the stream via StreamFactory.New
// 2) Call Reassembled 0 or more times, passing in reassembled TCP data in
// order
// 3) Call ReassemblyComplete one time, after which the stream is
// dereferenced by assembly.
type Stream interface {
// Reassembled is called zero or more times. Assembly guarantees that the
// set of all Reassembly objects passed in during all calls are presented in
// the order they appear in the TCP stream. Reassembly objects are reused
// after each Reassembled call, so it's important to copy anything you need
// out of them (specifically out of Reassembly.Bytes) that you need to stay
// around after you return from the Reassembled call.
Reassembled([]Reassembly)
// ReassemblyComplete is called when assembly decides there is no more data
// for this Stream, either because a FIN or RST packet was seen, or because
// the stream has timed out without any new packet data (due to a call to
// FlushOlderThan).
ReassemblyComplete()
}
// StreamFactory is used by assembly to create a new stream for each new TCP
// session.
type StreamFactory interface {
// New should return a new stream for the given TCP key.
New(netFlow, tcpFlow gopacket.Flow) tcpassembly.Stream
}
func (p *StreamPool) connections() []*connection {
p.mu.RLock()
conns := make([]*connection, 0, len(p.conns))
for _, conn := range p.conns {
conns = append(conns, conn)
}
p.mu.RUnlock()
return conns
}
//FlushOlderThan finds any streams waiting for packets older than the given
//time, and pushes through the data they have (IE: tells them to stop waiting
//and skip the data they're waiting for).
//
//Each Stream maintains a list of zero or more sets of bytes it has received
//out-of-order. For example, if it has processed up through sequence number
//10, it might have bytes [15-20), [20-25), [30,50) in its list. Each set of
//bytes also has the timestamp it was originally viewed. A flush call will
//look at the smallest subsequent set of bytes, in this case [15-20), and if
//its timestamp is older than the passed-in time, it will push it and all
//contiguous byte-sets out to the Stream's Reassembled function. In this case,
//it will push [15-20), but also [20-25), since that's contiguous. It will
//only push [30-50) if its timestamp is also older than the passed-in time,
//otherwise it will wait until the next FlushOlderThan to see if bytes [25-30)
//come in.
//
//If it pushes all bytes (or there were no sets of bytes to begin with) AND the
//connection has not received any bytes since the passed-in time, the
//connection will be closed.
//
//Returns the number of connections flushed, and of those, the number closed
//because of the flush.
func (a *Assembler) FlushOlderThan(t time.Time) (flushed, closed int) {
conns := a.connPool.connections()
closes := 0
flushes := 0
for _, conn := range conns {
flushed := false
conn.mu.Lock()
if conn.closed {
// Already closed connection, nothing to do here.
conn.mu.Unlock()
continue
}
for conn.first != nil && conn.first.Seen.Before(t) {
a.skipFlush(conn)
flushed = true
if conn.closed {
closes++
break
}
}
if !conn.closed && conn.first == nil && conn.lastSeen.Before(t) {
flushed = true
a.closeConnection(conn)
closes++
}
if flushed {
flushes++
}
conn.mu.Unlock()
}
return flushes, closes
}
// FlushAll flushes all remaining data into all remaining connections, closing
// those connections. It returns the total number of connections flushed/closed
// by the call.
func (a *Assembler) FlushAll() (closed int) {
conns := a.connPool.connections()
closed = len(conns)
for _, conn := range conns {
conn.mu.Lock()
for !conn.closed {
a.skipFlush(conn)
}
conn.mu.Unlock()
}
return
}
type key [2]gopacket.Flow
func (k *key) String() string {
return fmt.Sprintf("%s:%s", k[0], k[1])
}
// StreamPool stores all streams created by Assemblers, allowing multiple
// assemblers to work together on stream processing while enforcing the fact
// that a single stream receives its data serially. It is safe for concurrency,
// usable by multiple Assemblers at once.
//
// StreamPool handles the creation and storage of Stream objects used by one or
// more Assembler objects. When a new TCP stream is found by an Assembler, it
// creates an associated Stream by calling its StreamFactory's New method.
// Thereafter (until the stream is closed), that Stream object will receive
// assembled TCP data via Assembler's calls to the stream's Reassembled
// function.
//
// Like the Assembler, StreamPool attempts to minimize allocation. Unlike the
// Assembler, though, it does have to do some locking to make sure that the
// connection objects it stores are accessible to multiple Assemblers.
type StreamPool struct {
conns map[key]*connection
users int
mu sync.RWMutex
factory StreamFactory
free []*connection
all [][]connection
nextAlloc int
newConnectionCount int64
}
func (p *StreamPool) grow() {
conns := make([]connection, p.nextAlloc)
p.all = append(p.all, conns)
for i := range conns {
p.free = append(p.free, &conns[i])
}
if *memLog {
log.Println("StreamPool: created", p.nextAlloc, "new connections")
}
p.nextAlloc *= 2
}
// NewStreamPool creates a new connection pool. Streams will
// be created as necessary using the passed-in StreamFactory.
func NewStreamPool(factory StreamFactory) *StreamPool {
return &StreamPool{
conns: make(map[key]*connection, initialAllocSize),
free: make([]*connection, 0, initialAllocSize),
factory: factory,
nextAlloc: initialAllocSize,
}
}
const assemblerReturnValueInitialSize = 16
// NewAssembler creates a new assembler. Pass in the StreamPool
// to use, may be shared across assemblers.
//
// This sets some sane defaults for the assembler options,
// see DefaultAssemblerOptions for details.
func NewAssembler(pool *StreamPool) *Assembler {
pool.mu.Lock()
pool.users++
pool.mu.Unlock()
return &Assembler{
ret: make([]tcpassembly.Reassembly, assemblerReturnValueInitialSize),
pc: newPageCache(),
connPool: pool,
AssemblerOptions: DefaultAssemblerOptions,
}
}
// DefaultAssemblerOptions provides default options for an assembler.
// These options are used by default when calling NewAssembler, so if
// modified before a NewAssembler call they'll affect the resulting Assembler.
//
// Note that the default options can result in ever-increasing memory usage
// unless one of the Flush* methods is called on a regular basis.
var DefaultAssemblerOptions = AssemblerOptions{
MaxBufferedPagesPerConnection: 0, // unlimited
MaxBufferedPagesTotal: 0, // unlimited
}
type connection struct {
key key
pages int
first, last *page
nextSeq Sequence
created, lastSeen time.Time
stream tcpassembly.Stream
closed bool
mu sync.Mutex
}
func (conn *connection) reset(k key, s tcpassembly.Stream, ts time.Time) {
conn.key = k
conn.pages = 0
conn.first, conn.last = nil, nil
conn.nextSeq = invalidSequence
conn.created = ts
conn.stream = s
conn.closed = false
}
// AssemblerOptions controls the behavior of each assembler. Modify the
// options of each assembler you create to change their behavior.
type AssemblerOptions struct {
// MaxBufferedPagesTotal is an upper limit on the total number of pages to
// buffer while waiting for out-of-order packets. Once this limit is
// reached, the assembler will degrade to flushing every connection it gets
// a packet for. If <= 0, this is ignored.
MaxBufferedPagesTotal int
// MaxBufferedPagesPerConnection is an upper limit on the number of pages
// buffered for a single connection. Should this limit be reached for a
// particular connection, the smallest sequence number will be flushed,
// along with any contiguous data. If <= 0, this is ignored.
MaxBufferedPagesPerConnection int
}
// Assembler handles reassembling TCP streams. It is not safe for
// concurrency... after passing a packet in via the Assemble call, the caller
// must wait for that call to return before calling Assemble again. Callers can
// get around this by creating multiple assemblers that share a StreamPool. In
// that case, each individual stream will still be handled serially (each stream
// has an individual mutex associated with it), however multiple assemblers can
// assemble different connections concurrently.
//
// The Assembler provides (hopefully) fast TCP stream re-assembly for sniffing
// applications written in Go. The Assembler uses the following methods to be
// as fast as possible, to keep packet processing speedy:
//
// Avoids Lock Contention
//
// Assemblers locks connections, but each connection has an individual lock, and
// rarely will two Assemblers be looking at the same connection. Assemblers
// lock the StreamPool when looking up connections, but they use Reader locks
// initially, and only force a write lock if they need to create a new
// connection or close one down. These happen much less frequently than
// individual packet handling.
//
// Each assembler runs in its own goroutine, and the only state shared between
// goroutines is through the StreamPool. Thus all internal Assembler state can
// be handled without any locking.
//
// NOTE: If you can guarantee that packets going to a set of Assemblers will
// contain information on different connections per Assembler (for example,
// they're already hashed by PF_RING hashing or some other hashing mechanism),
// then we recommend you use a seperate StreamPool per Assembler, thus avoiding
// all lock contention. Only when different Assemblers could receive packets
// for the same Stream should a StreamPool be shared between them.
//
// Avoids Memory Copying
//
// In the common case, handling of a single TCP packet should result in zero
// memory allocations. The Assembler will look up the connection, figure out
// that the packet has arrived in order, and immediately pass that packet on to
// the appropriate connection's handling code. Only if a packet arrives out of
// order is its contents copied and stored in memory for later.
//
// Avoids Memory Allocation
//
// Assemblers try very hard to not use memory allocation unless absolutely
// necessary. Packet data for sequential packets is passed directly to streams
// with no copying or allocation. Packet data for out-of-order packets is
// copied into reusable pages, and new pages are only allocated rarely when the
// page cache runs out. Page caches are Assembler-specific, thus not used
// concurrently and requiring no locking.
//
// Internal representations for connection objects are also reused over time.
// Because of this, the most common memory allocation done by the Assembler is
// generally what's done by the caller in StreamFactory.New. If no allocation
// is done there, then very little allocation is done ever, mostly to handle
// large increases in bandwidth or numbers of connections.
//
// TODO: The page caches used by an Assembler will grow to the size necessary
// to handle a workload, and currently will never shrink. This means that
// traffic spikes can result in large memory usage which isn't garbage collected
// when typical traffic levels return.
type Assembler struct {
AssemblerOptions
ret []tcpassembly.Reassembly
pc *pageCache
connPool *StreamPool
}
func (p *StreamPool) newConnection(k key, s tcpassembly.Stream, ts time.Time) (c *connection) {
if *memLog {
p.newConnectionCount++
if p.newConnectionCount&0x7FFF == 0 {
log.Println("StreamPool:", p.newConnectionCount, "requests,", len(p.conns), "used,", len(p.free), "free")
}
}
if len(p.free) == 0 {
p.grow()
}
index := len(p.free) - 1
c, p.free = p.free[index], p.free[:index]
c.reset(k, s, ts)
return c
}
// getConnection returns a connection. If end is true and a connection
// does not already exist, returns nil. This allows us to check for a
// connection without actually creating one if it doesn't already exist.
func (p *StreamPool) getConnection(k key, end bool, ts time.Time) *connection {
p.mu.RLock()
conn := p.conns[k]
p.mu.RUnlock()
if end || conn != nil {
return conn
}
s := p.factory.New(k[0], k[1])
p.mu.Lock()
conn = p.newConnection(k, s, ts)
if conn2 := p.conns[k]; conn2 != nil {
p.mu.Unlock()
return conn2
}
p.conns[k] = conn
p.mu.Unlock()
return conn
}
// Assemble calls AssembleWithTimestamp with the current timestamp, useful for
// packets being read directly off the wire.
func (a *Assembler) Assemble(netFlow gopacket.Flow, t *layers.TCP) {
a.AssembleWithTimestamp(netFlow, t, time.Now())
}
// AssembleWithTimestamp reassembles the given TCP packet into its appropriate
// stream.
//
// The timestamp passed in must be the timestamp the packet was seen. For
// packets read off the wire, time.Now() should be fine. For packets read from
// PCAP files, CaptureInfo.Timestamp should be passed in. This timestamp will
// affect which streams are flushed by a call to FlushOlderThan.
//
// Each Assemble call results in, in order:
//
// zero or one calls to StreamFactory.New, creating a stream
// zero or one calls to Reassembled on a single stream
// zero or one calls to ReassemblyComplete on the same stream
func (a *Assembler) AssembleWithTimestamp(netFlow gopacket.Flow, t *layers.TCP, timestamp time.Time) {
// Ignore empty TCP packets
if !t.SYN && !t.FIN && !t.RST && len(t.LayerPayload()) == 0 {
return
}
a.ret = a.ret[:0]
key := key{netFlow, t.TransportFlow()}
var conn *connection
// This for loop handles a race condition where a connection will close,
// lock the connection pool, and remove itself, but before it locked the
// connection pool it's returned to another Assemble statement. This should
// loop 0-1 times for the VAST majority of cases.
for {
conn = a.connPool.getConnection(
key, !t.SYN && len(t.LayerPayload()) == 0, timestamp)
if conn == nil {
if *debugLog {
log.Printf("%v got empty packet on otherwise empty connection", key)
}
return
}
conn.mu.Lock()
if !conn.closed {
break
}
conn.mu.Unlock()
}
if conn.lastSeen.Before(timestamp) {
conn.lastSeen = timestamp
}
seq, bytes := Sequence(t.Seq), t.Payload
if conn.nextSeq == invalidSequence {
// Handling the first packet we've seen on the stream.
skip := 0
if !t.SYN {
// don't add 1 since we're just going to assume the sequence number
// without the SYN packet.
// stream was picked up somewhere in the middle, so indicate that we
// don't know how many packets came before it.
conn.nextSeq = seq.Add(len(bytes))
skip = -1
} else {
// for SYN packets, also increment the sequence number by 1
conn.nextSeq = seq.Add(len(bytes) + 1)
}
a.ret = append(a.ret, tcpassembly.Reassembly{
Bytes: bytes,
Skip: skip,
Start: t.SYN,
Seen: timestamp,
})
a.insertIntoConn(t, conn, timestamp)
} else if diff := conn.nextSeq.Difference(seq); diff > 0 {
a.insertIntoConn(t, conn, timestamp)
} else {
bytes, conn.nextSeq = byteSpan(conn.nextSeq, seq, bytes)
a.ret = append(a.ret, tcpassembly.Reassembly{
Bytes: bytes,
Skip: 0,
End: t.RST || t.FIN,
Seen: timestamp,
})
}
if len(a.ret) > 0 {
a.sendToConnection(conn)
}
conn.mu.Unlock()
}
func byteSpan(expected, received Sequence, bytes []byte) (toSend []byte, next Sequence) {
if expected == invalidSequence {
return bytes, received.Add(len(bytes))
}
span := int(received.Difference(expected))
if span <= 0 {
return bytes, received.Add(len(bytes))
} else if len(bytes) < span {
return nil, expected
}
return bytes[span:], expected.Add(len(bytes) - span)
}
// sendToConnection sends the current values in a.ret to the connection, closing
// the connection if the last thing sent had End set.
func (a *Assembler) sendToConnection(conn *connection) {
a.addContiguous(conn)
if conn.stream == nil {
panic("why?")
}
conn.stream.Reassembled(a.ret)
if a.ret[len(a.ret)-1].End {
a.closeConnection(conn)
}
}
// addContiguous adds contiguous byte-sets to a connection.
func (a *Assembler) addContiguous(conn *connection) {
for conn.first != nil && conn.nextSeq.Difference(conn.first.seq) <= 0 {
a.addNextFromConn(conn)
}
}
// skipFlush skips the first set of bytes we're waiting for and returns the
// first set of bytes we have. If we have no bytes pending, it closes the
// connection.
func (a *Assembler) skipFlush(conn *connection) {
if *debugLog {
log.Printf("%v skipFlush %v", conn.key, conn.nextSeq)
}
if conn.first == nil {
a.closeConnection(conn)
return
}
a.ret = a.ret[:0]
a.addNextFromConn(conn)
a.addContiguous(conn)
a.sendToConnection(conn)
}
func (p *StreamPool) remove(conn *connection) {
p.mu.Lock()
delete(p.conns, conn.key)
p.free = append(p.free, conn)
p.mu.Unlock()
}
func (a *Assembler) closeConnection(conn *connection) {
if *debugLog {
log.Printf("%v closing", conn.key)
}
conn.stream.ReassemblyComplete()
conn.closed = true
a.connPool.remove(conn)
for p := conn.first; p != nil; p = p.next {
a.pc.replace(p)
}
}
// traverseConn traverses our doubly-linked list of pages for the correct
// position to put the given sequence number. Note that it traverses backwards,
// starting at the highest sequence number and going down, since we assume the
// common case is that TCP packets for a stream will appear in-order, with
// minimal loss or packet reordering.
func (conn *connection) traverseConn(seq Sequence) (prev, current *page) {
prev = conn.last
for prev != nil && prev.seq.Difference(seq) < 0 {
current = prev
prev = current.prev
}
return
}
// pushBetween inserts the doubly-linked list first-...-last in between the
// nodes prev-next in another doubly-linked list. If prev is nil, makes first
// the new first page in the connection's list. If next is nil, makes last the
// new last page in the list. first/last may point to the same page.
func (conn *connection) pushBetween(prev, next, first, last *page) {
// Maintain our doubly linked list
if next == nil || conn.last == nil {
conn.last = last
} else {
last.next = next
next.prev = last
}
if prev == nil || conn.first == nil {
conn.first = first
} else {
first.prev = prev
prev.next = first
}
}
func (a *Assembler) insertIntoConn(t *layers.TCP, conn *connection, ts time.Time) {
if conn.first != nil && conn.first.seq == conn.nextSeq {
panic("wtf")
}
p, p2, numPages := a.pagesFromTCP(t, ts)
prev, current := conn.traverseConn(Sequence(t.Seq))
conn.pushBetween(prev, current, p, p2)
conn.pages += numPages
if (a.MaxBufferedPagesPerConnection > 0 && conn.pages >= a.MaxBufferedPagesPerConnection) ||
(a.MaxBufferedPagesTotal > 0 && a.pc.used >= a.MaxBufferedPagesTotal) {
if *debugLog {
log.Printf("%v hit max buffer size: %+v, %v, %v", conn.key, a.AssemblerOptions, conn.pages, a.pc.used)
}
a.addNextFromConn(conn)
}
}
// pagesFromTCP creates a page (or set of pages) from a TCP packet. Note that
// it should NEVER receive a SYN packet, as it doesn't handle sequences
// correctly.
//
// It returns the first and last page in its doubly-linked list of new pages.
func (a *Assembler) pagesFromTCP(t *layers.TCP, ts time.Time) (p, p2 *page, numPages int) {
first := a.pc.next(ts)
current := first
numPages++
seq, bytes := Sequence(t.Seq), t.Payload
for {
length := min(len(bytes), pageBytes)
current.Bytes = current.buf[:length]
copy(current.Bytes, bytes)
current.seq = seq
bytes = bytes[length:]
if len(bytes) == 0 {
break
}
seq = seq.Add(length)
current.next = a.pc.next(ts)
current.next.prev = current
current = current.next
numPages++
}
current.End = t.RST || t.FIN
return first, current, numPages
}
// addNextFromConn pops the first page from a connection off and adds it to the
// return array.
func (a *Assembler) addNextFromConn(conn *connection) {
if conn.nextSeq == invalidSequence {
conn.first.Skip = -1
} else if diff := conn.nextSeq.Difference(conn.first.seq); diff > 0 {
conn.first.Skip = int(diff)
}
conn.first.Bytes, conn.nextSeq = byteSpan(conn.nextSeq, conn.first.seq, conn.first.Bytes)
if *debugLog {
log.Printf("%v adding from conn (%v, %v)", conn.key, conn.first.seq, conn.nextSeq)
}
a.ret = append(a.ret, conn.first.Reassembly)
a.pc.replace(conn.first)
if conn.first == conn.last {
conn.first = nil
conn.last = nil
} else {
conn.first = conn.first.next
conn.first.prev = nil
}
conn.pages--
}
func min(a, b int) int {
if a < b {
return a
}
return b
}

144
core/cmd.go Normal file
View File

@ -0,0 +1,144 @@
package core
import (
"os"
"strings"
"fmt"
"net"
"strconv"
)
const InternalCmdPrefix = "--"
const (
InternalCmdHelp = "help" //帮助文档
InternalCmdEnv = "env" //环境变量
InternalCmdList = "list" //插件列表
InternalCmdVer = "ver" //版本信息
InternalDevice = "dev" //设备链表
)
type Cmd struct {
Device string
plugHandle *Plug
}
func NewCmd(p *Plug) *Cmd {
return &Cmd{
plugHandle:p,
}
}
//start
func (cm *Cmd) Run() {
//使用帮助
if len(os.Args) <= 1 {
cm.printHelpMessage();
os.Exit(1)
}
//解析命令
firstArg := string(os.Args[1])
if strings.HasPrefix(firstArg, InternalCmdPrefix) {
cm.parseInternalCmd()
} else {
cm.parsePlugCmd()
}
}
//解析内部参数
func (cm *Cmd) parseInternalCmd() {
arg := string(os.Args[1])
cmd := strings.Trim(arg, InternalCmdPrefix)
switch cmd {
case InternalCmdHelp:
cm.printHelpMessage()
break;
case InternalCmdEnv:
fmt.Println("插件路径:"+cm.plugHandle.dir)
break
case InternalCmdList:
cm.plugHandle.PrintList()
break
case InternalCmdVer:
fmt.Println(cxt.Version)
break
case InternalDevice:
cm.printDevice()
break;
}
os.Exit(1)
}
//使用说明
func (cm *Cmd) printHelpMessage() {
fmt.Println("==================================================================================")
fmt.Println("[使用说明]")
fmt.Println("")
fmt.Println(" go-sniffer [设备名] [插件名] [插件参数(可选)]")
fmt.Println()
fmt.Println(" [例子]")
fmt.Println(" go-sniffer en0 redis 抓取redis数据包")
fmt.Println(" go-sniffer en0 mysql -p 3306 抓取mysql数据包,端口3306")
fmt.Println()
fmt.Println(" go-sniffer --[命令]")
fmt.Println(" --help 帮助信息")
fmt.Println(" --env 环境变量")
fmt.Println(" --list 插件列表")
fmt.Println(" --ver 版本信息")
fmt.Println(" --dev 设备列表")
fmt.Println(" [例子]")
fmt.Println(" go-sniffer --list 查看可抓取的协议")
fmt.Println()
fmt.Println("==================================================================================")
cm.printDevice()
fmt.Println("==================================================================================")
}
//打印插件
func (cm *Cmd) printPlugList() {
l := len(cm.plugHandle.InternalPlugList)
l += len(cm.plugHandle.ExternalPlugList)
fmt.Println("# 插件数量:"+strconv.Itoa(l))
}
//打印设备
func (cm *Cmd) printDevice() {
ifaces, err:= net.Interfaces()
if err != nil {
panic(err)
}
for _, iface := range ifaces {
addrs, _ := iface.Addrs()
for _,a:=range addrs {
if ipnet, ok := a.(*net.IPNet); ok {
if ip4 := ipnet.IP.To4(); ip4 != nil {
fmt.Println("[设备名] : "+iface.Name+" : "+iface.HardwareAddr.String()+" "+ip4.String())
}
}
}
}
}
//解析插件需要的参数
func (cm *Cmd) parsePlugCmd() {
if len(os.Args) < 3 {
fmt.Println("缺少[插件名]")
fmt.Println("go-sniffer [设备名] [插件名] [插件参数(可选)]")
os.Exit(1)
}
cm.Device = os.Args[1]
plugName := os.Args[2]
plugParams:= os.Args[3:]
cm.plugHandle.SetOption(plugName, plugParams)
}

28
core/core.go Normal file
View File

@ -0,0 +1,28 @@
package core
type Core struct{
//版本信息
Version string
}
var cxt Core
func New() Core {
cxt.Version = "0.1"
return cxt
}
func (c *Core) Run() {
//插件
plug := NewPlug()
//解析参数
cmd := NewCmd(plug)
cmd.Run()
//开启抓包
NewDispatch(plug, cmd).Capture()
}

100
core/dispatch.go Normal file
View File

@ -0,0 +1,100 @@
package core
import (
"fmt"
"github.com/google/gopacket/pcap"
"log"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
"github.com/google/gopacket/tcpassembly"
"github.com/google/gopacket/tcpassembly/tcpreader"
"time"
)
type Dispatch struct {
device string
payload []byte
Plug *Plug
}
func NewDispatch(plug *Plug, cmd *Cmd) *Dispatch {
return &Dispatch {
Plug: plug,
device:cmd.Device,
}
}
func (d *Dispatch) Capture() {
// Init device
handle, err := pcap.OpenLive(d.device, 65535, false, pcap.BlockForever)
if err != nil {
return
}
// Set filter
fmt.Println(d.Plug.BPF)
err = handle.SetBPFFilter(d.Plug.BPF)
if err != nil {
log.Fatal(err)
}
// Capture
src := gopacket.NewPacketSource(handle, handle.LinkType())
packets := src.Packets()
// Set up assembly
streamFactory := &ProtocolStreamFactory{
dispatch:d,
}
streamPool := NewStreamPool(streamFactory)
assembler := NewAssembler(streamPool)
ticker := time.Tick(time.Minute)
// Loop until ctrl+z
for {
select {
case packet := <-packets:
if packet.NetworkLayer() == nil ||
packet.TransportLayer() == nil ||
packet.TransportLayer().LayerType() != layers.LayerTypeTCP {
fmt.Println("包不能解析")
continue
}
tcp := packet.TransportLayer().(*layers.TCP)
assembler.AssembleWithTimestamp(
packet.NetworkLayer().NetworkFlow(),
tcp, packet.Metadata().Timestamp,
)
case <-ticker:
assembler.FlushOlderThan(time.Now().Add(time.Minute * -2))
}
}
}
type ProtocolStreamFactory struct {
dispatch *Dispatch
}
type ProtocolStream struct {
net, transport gopacket.Flow
r tcpreader.ReaderStream
}
func (m *ProtocolStreamFactory) New(net, transport gopacket.Flow) tcpassembly.Stream {
//init stream struct
stm := &ProtocolStream {
net: net,
transport: transport,
r: tcpreader.NewReaderStream(),
}
//new stream
fmt.Println("# 新连接:", net, transport)
//decode packet
go m.dispatch.Plug.ResolveStream(net, transport, &(stm.r))
return &(stm.r)
}

198
core/plug.go Normal file
View File

@ -0,0 +1,198 @@
package core
import (
"io/ioutil"
"plugin"
"github.com/google/gopacket"
"io"
mysql "github.com/40t/go-sniffer/plugSrc/mysql/build"
redis "github.com/40t/go-sniffer/plugSrc/redis/build"
hp "github.com/40t/go-sniffer/plugSrc/http/build"
"path/filepath"
"fmt"
"path"
)
type Plug struct {
//当前插件路径
dir string
//解析包
ResolveStream func(net gopacket.Flow, transport gopacket.Flow, r io.Reader)
//BPF
BPF string
//内部插件列表
InternalPlugList map[string]PlugInterface
//外部插件列表
ExternalPlugList map[string]ExternalPlug
}
// 内部插件必须实现此接口
// ResolvePacket - 包入口
// BPFFilter - 设置BPF规则,例如mysql: (tcp and port 3306)
// SetFlag - 设置参数
// Version - 返回插件版本,例如0.1.0
type PlugInterface interface {
//解析流
ResolveStream(net gopacket.Flow, transport gopacket.Flow, r io.Reader)
//BPF
BPFFilter() string
//设置插件需要的参数
SetFlag([]string)
//获取版本
Version() string
}
//外部插件
type ExternalPlug struct {
Name string
Version string
ResolvePacket func(net gopacket.Flow, transport gopacket.Flow, r io.Reader)
BPFFilter func() string
SetFlag func([]string)
}
//实例化
func NewPlug() *Plug {
var p Plug
//设置默认插件目录
p.dir, _ = filepath.Abs( "./plug/")
//加载内部插件
p.LoadInternalPlugList()
//加载外部插件
p.LoadExternalPlugList()
return &p
}
//加载内部插件
func (p *Plug) LoadInternalPlugList() {
list := make(map[string]PlugInterface)
//Mysql
list["mysql"] = mysql.NewInstance()
//TODO Mongodb
//TODO ARP
//Redis
list["redis"] = redis.NewInstance()
//Http
list["http"] = hp.NewInstance()
p.InternalPlugList = list
}
//加载外部so后缀插件
func (p *Plug) LoadExternalPlugList() {
dir, err := ioutil.ReadDir(p.dir)
if err != nil {
panic(p.dir + "不存在,或者无权访问")
}
p.ExternalPlugList = make(map[string]ExternalPlug)
for _, fi := range dir {
if fi.IsDir() || path.Ext(fi.Name()) != ".so" {
continue
}
plug, err := plugin.Open(p.dir+"/"+fi.Name())
if err != nil {
panic(err)
}
versionFunc, err := plug.Lookup("Version")
if err != nil {
panic(err)
}
setFlagFunc, err := plug.Lookup("SetFlag")
if err != nil {
panic(err)
}
BPFFilterFunc, err := plug.Lookup("BPFFilter")
if err != nil {
panic(err)
}
ResolvePacketFunc, err := plug.Lookup("ResolvePacket")
if err != nil {
panic(err)
}
version := versionFunc.(func() string)()
p.ExternalPlugList[fi.Name()] = ExternalPlug {
ResolvePacket:ResolvePacketFunc.(func(net gopacket.Flow, transport gopacket.Flow, r io.Reader)),
SetFlag:setFlagFunc.(func([]string)),
BPFFilter:BPFFilterFunc.(func() string),
Version:version,
Name:fi.Name(),
}
}
}
//改变插件地址
func (p *Plug) ChangePath(dir string) {
p.dir = dir
}
//打印插件列表
func (p *Plug) PrintList() {
//Print Internal Plug
for inPlugName, _ := range p.InternalPlugList {
fmt.Println("内部插件:"+inPlugName)
}
//split
fmt.Println("-- --- --")
//print External Plug
for exPlugName, _ := range p.ExternalPlugList {
fmt.Println("外部插件:"+exPlugName)
}
}
//选择当前使用的插件 && 加载插件
func (p *Plug) SetOption(plugName string, plugParams []string) {
//Load Internal Plug
if internalPlug, ok := p.InternalPlugList[plugName]; ok {
p.ResolveStream = internalPlug.ResolveStream
internalPlug.SetFlag(plugParams)
p.BPF = internalPlug.BPFFilter()
return
}
//Load External Plug
plug, err := plugin.Open("./plug/"+ plugName)
if err != nil {
panic(err)
}
resolvePacket, err := plug.Lookup("ResolvePacket")
if err != nil {
panic(err)
}
setFlag, err := plug.Lookup("SetFlag")
if err != nil {
panic(err)
}
BPFFilter, err := plug.Lookup("BPFFilter")
if err != nil {
panic(err)
}
p.ResolveStream = resolvePacket.(func(net gopacket.Flow, transport gopacket.Flow, r io.Reader))
setFlag.(func([]string))(plugParams)
p.BPF = BPFFilter.(func()string)()
}

10
main.go Normal file
View File

@ -0,0 +1,10 @@
package main
import (
"github.com/40t/go-sniffer/core"
)
func main() {
core := core.New()
core.Run()
}

0
plug/.gitkeep Normal file
View File

106
plugSrc/http/build/entry.go Normal file
View File

@ -0,0 +1,106 @@
package build
import (
"github.com/google/gopacket"
"io"
"log"
"strconv"
"fmt"
"os"
"bufio"
"net/http"
)
const (
Port = 80
Version = "0.1"
)
const (
CmdPort = "-p"
)
type H struct {
port int//端口
version string//插件版本
}
var hp *H
func NewInstance() *H {
if hp == nil {
hp = &H{
port :Port,
version:Version,
}
}
return hp
}
func (m *H) ResolveStream(net, transport gopacket.Flow, buf io.Reader) {
bio := bufio.NewReader(buf)
for {
req, err := http.ReadRequest(bio)
if err == io.EOF {
return
} else if err != nil {
continue
} else {
var msg = "["
msg += req.Method
msg += "] ["
msg += req.Host + req.URL.String()
msg += "] ["
req.ParseForm()
msg += req.Form.Encode()
msg += "]"
log.Println(msg)
req.Body.Close()
}
}
}
func (m *H) BPFFilter() string {
return "tcp and port "+strconv.Itoa(m.port);
}
func (m *H) Version() string {
return Version
}
func (m *H) SetFlag(flg []string) {
c := len(flg)
if c == 0 {
return
}
if c >> 1 == 0 {
fmt.Println("http参数数量不正确!")
os.Exit(1)
}
for i:=0;i<c;i=i+2 {
key := flg[i]
val := flg[i+1]
switch key {
case CmdPort:
port, err := strconv.Atoi(val);
m.port = port
if err != nil {
panic("端口数不正确")
}
if port < 0 || port > 65535 {
panic("参数不正确: 端口范围(0-65535)")
}
break
default:
panic("参数不正确")
}
}
}

View File

@ -0,0 +1,79 @@
package build
const (
ComQueryRequestPacket string = "【查询】"
OkPacket string = "【正确】"
ErrorPacket string = "【错误】"
PreparePacket string = "【预处理】"
SendClientHandshakePacket string = "【用户认证】"
SendServerHandshakePacket string = "【登录认证】"
)
const (
COM_SLEEP byte = 0
COM_QUIT = 1
COM_INIT_DB = 2
COM_QUERY = 3
COM_FIELD_LIST = 4
COM_CREATE_DB = 5
COM_DROP_DB = 6
COM_REFRESH = 7
COM_SHUTDOWN = 8
COM_STATISTICS = 9
COM_PROCESS_INFO = 10
COM_CONNECT = 11
COM_PROCESS_KILL = 12
COM_DEBUG = 13
COM_PING = 14
COM_TIME = 15
COM_DELAYED_INSERT = 16
COM_CHANGE_USER = 17
COM_BINLOG_DUMP = 18
COM_TABLE_DUMP = 19
COM_CONNECT_OUT = 20
COM_REGISTER_SLAVE = 21
COM_STMT_PREPARE = 22
COM_STMT_EXECUTE = 23
COM_STMT_SEND_LONG_DATA = 24
COM_STMT_CLOSE = 25
COM_STMT_RESET = 26
COM_SET_OPTION = 27
COM_STMT_FETCH = 28
COM_DAEMON = 29
COM_BINLOG_DUMP_GTID = 30
COM_RESET_CONNECTION = 31
)
const (
MYSQL_TYPE_DECIMAL byte = 0
MYSQL_TYPE_TINY = 1
MYSQL_TYPE_SHORT = 2
MYSQL_TYPE_LONG = 3
MYSQL_TYPE_FLOAT = 4
MYSQL_TYPE_DOUBLE = 5
MYSQL_TYPE_NULL = 6
MYSQL_TYPE_TIMESTAMP = 7
MYSQL_TYPE_LONGLONG = 8
MYSQL_TYPE_INT24 = 9
MYSQL_TYPE_DATE = 10
MYSQL_TYPE_TIME = 11
MYSQL_TYPE_DATETIME = 12
MYSQL_TYPE_YEAR = 13
MYSQL_TYPE_NEWDATE = 14
MYSQL_TYPE_VARCHAR = 15
MYSQL_TYPE_BIT = 16
)
const (
MYSQL_TYPE_JSON byte = iota + 0xf5
MYSQL_TYPE_NEWDECIMAL
MYSQL_TYPE_ENUM
MYSQL_TYPE_SET
MYSQL_TYPE_TINY_BLOB
MYSQL_TYPE_MEDIUM_BLOB
MYSQL_TYPE_LONG_BLOB
MYSQL_TYPE_BLOB
MYSQL_TYPE_VAR_STRING
MYSQL_TYPE_STRING
MYSQL_TYPE_GEOMETRY
)

View File

@ -0,0 +1,350 @@
package build
import (
"github.com/google/gopacket"
"io"
"bytes"
"errors"
"log"
"strconv"
"sync"
"time"
"fmt"
"encoding/binary"
"strings"
"os"
)
const (
Port = 3306
Version = "0.1"
CmdPort = "-p"
)
type Mysql struct {
port int//端口
version string//插件版本
source map[string]*stream//流
}
type stream struct {
packets chan *packet
stmtMap map[uint32]*Stmt
}
type packet struct {
isClientFlow bool
seq int
length int
payload []byte
}
var mysql *Mysql
var once sync.Once
func NewInstance() *Mysql {
once.Do(func() {
mysql = &Mysql{
port :Port,
version:Version,
source: make(map[string]*stream),
}
})
return mysql
}
func (m *Mysql) ResolveStream(net, transport gopacket.Flow, buf io.Reader) {
//uuid
uuid := fmt.Sprintf("%v:%v", net.FastHash(), transport.FastHash())
//generate resolve's stream
if _, ok := m.source[uuid]; !ok {
var newStream = stream{
packets:make(chan *packet, 100),
stmtMap:make(map[uint32]*Stmt),
}
m.source[uuid] = &newStream
go newStream.resolve()
}
//read bi-directional packet
//server -> client || client -> server
for {
newPacket := m.newPacket(net, transport, buf)
if newPacket == nil {
return
}
m.source[uuid].packets <- newPacket
}
}
func (m *Mysql) BPFFilter() string {
return "tcp and port "+strconv.Itoa(m.port);
}
func (m *Mysql) Version() string {
return Version
}
func (m *Mysql) SetFlag(flg []string) {
c := len(flg)
if c == 0 {
return
}
if c >> 1 == 0 {
fmt.Println("Mysql参数数量不正确!")
os.Exit(1)
}
for i:=0;i<c;i=i+2 {
key := flg[i]
val := flg[i+1]
switch key {
case CmdPort:
port, err := strconv.Atoi(val);
m.port = port
if err != nil {
panic("端口数不正确")
}
if port < 0 || port > 65535 {
panic("参数不正确: 端口范围(0-65535)")
}
break
default:
panic("参数不正确")
}
}
}
func (m *Mysql) newPacket(net, transport gopacket.Flow, r io.Reader) *packet {
//read packet
var payload bytes.Buffer
var seq uint8
var err error
if seq, err = m.resolvePacketTo(r, &payload); err != nil {
return nil
}
//close stream
if err == io.EOF {
fmt.Println(net, transport, " 关闭")
return nil
} else if err != nil {
fmt.Println("错误流:", net, transport, ":", err)
}
//generate new packet
var pk = packet{
seq: int(seq),
length:payload.Len(),
payload:payload.Bytes(),
}
if transport.Src().String() == strconv.Itoa(Port) {
pk.isClientFlow = false
}else{
pk.isClientFlow = true
}
return &pk
}
func (m *Mysql) resolvePacketTo(r io.Reader, w io.Writer) (uint8, error) {
header := make([]byte, 4)
if n, err := io.ReadFull(r, header); err != nil {
if n == 0 && err == io.EOF {
return 0, io.EOF
}
return 0, errors.New("错误流")
}
length := int(uint32(header[0]) | uint32(header[1])<<8 | uint32(header[2])<<16)
var seq uint8
seq = header[3]
if n, err := io.CopyN(w, r, int64(length)); err != nil {
return 0, errors.New("错误流")
} else if n != int64(length) {
return 0, errors.New("错误流")
} else {
return seq, nil
}
return seq, nil
}
func (stm *stream) resolve() {
for {
select {
case packet := <- stm.packets:
if packet.isClientFlow {
stm.resolveClientPacket(packet.payload, packet.seq)
} else {
stm.resolveServerPacket(packet.payload, packet.seq)
}
}
}
}
func (stm *stream) findStmtPacket (srv chan *packet, seq int) *packet {
for {
select {
case packet, ok := <- stm.packets:
if !ok {
return nil
}
if packet.seq == seq {
return packet
}
case <-time.After(5 * time.Second):
return nil
}
}
}
func (stm *stream) resolveServerPacket(payload []byte, seq int) {
var msg = ""
switch payload[0] {
case 0xff:
errorCode := int(binary.LittleEndian.Uint16(payload[1:3]))
errorMsg,_ := ReadStringFromByte(payload[4:])
msg = GetNowStr(false)+"%s 错误代码:%s,错误信息:%s"
msg = fmt.Sprintf(msg, ErrorPacket, strconv.Itoa(errorCode), strings.TrimSpace(errorMsg))
case 0x00:
var pos = 1
l,_ := LengthBinary(payload[pos:])
affectedRows := int(l)
msg += GetNowStr(false)+"%s 影响行数:%s"
msg = fmt.Sprintf(msg, OkPacket, strconv.Itoa(affectedRows))
default:
return
}
fmt.Println(msg)
}
func (stm *stream) resolveClientPacket(payload []byte, seq int) {
var msg string
switch payload[0] {
case COM_INIT_DB:
msg = fmt.Sprintf("USE %s;\n", payload[1:])
case COM_DROP_DB:
msg = fmt.Sprintf("删除数据库 %s;\n", payload[1:])
case COM_CREATE_DB, COM_QUERY:
statement := string(payload[1:])
msg = fmt.Sprintf("%s %s", ComQueryRequestPacket, statement)
case COM_STMT_PREPARE:
serverPacket := stm.findStmtPacket(stm.packets, seq+1)
if serverPacket == nil {
log.Println("找不到预处理响应包")
}
//获取响应包中预处理id
stmtID := binary.LittleEndian.Uint32(serverPacket.payload[1:5])
stmt := &Stmt{
ID: stmtID,
Query: string(payload[1:]),
}
//记录预处理语句
stm.stmtMap[stmtID] = stmt
stmt.FieldCount = binary.LittleEndian.Uint16(serverPacket.payload[5:7])
stmt.ParamCount = binary.LittleEndian.Uint16(serverPacket.payload[7:9])
stmt.Args = make([]interface{}, stmt.ParamCount)
msg = PreparePacket+stmt.Query
case COM_STMT_SEND_LONG_DATA:
stmtID := binary.LittleEndian.Uint32(payload[1:5])
paramId := binary.LittleEndian.Uint16(payload[5:7])
stmt, _ := stm.stmtMap[stmtID]
if stmt.Args[paramId] == nil {
stmt.Args[paramId] = payload[7:]
} else {
if b, ok := stmt.Args[paramId].([]byte); ok {
b = append(b, payload[7:]...)
stmt.Args[paramId] = b
}
}
return
case COM_STMT_RESET:
stmtID := binary.LittleEndian.Uint32(payload[1:5])
stmt, _:= stm.stmtMap[stmtID]
stmt.Args = make([]interface{}, stmt.ParamCount)
return
case COM_STMT_EXECUTE:
var pos = 1
stmtID := binary.LittleEndian.Uint32(payload[pos : pos+4])
pos += 4
var stmt *Stmt
var ok bool
if stmt, ok = stm.stmtMap[stmtID]; ok == false {
log.Println("未发现预处理id: ", stmtID)
}
//参数
pos += 5
if stmt.ParamCount > 0 {
//空位图Null-Bitmap长度 = (参数数量 + 7) / 8 字节)
step := int((stmt.ParamCount + 7) / 8)
nullBitmap := payload[pos : pos+step]
pos += step
//参数分隔标志
flag := payload[pos]
pos++
var pTypes []byte
var pValues []byte
//如果参数分隔标志值为1
//n 每个参数的类型值(长度 = 参数数量 * 2 字节)
//n 每个参数的值
if flag == 1 {
pTypes = payload[pos : pos+int(stmt.ParamCount)*2]
pos += int(stmt.ParamCount) * 2
pValues = payload[pos:]
}
//绑定参数
err := stmt.BindArgs(nullBitmap, pTypes, pValues)
if err != nil {
log.Println("预处理绑定参数失败: ", err)
}
}
msg = string(stmt.WriteToText())
default:
return
}
fmt.Println(GetNowStr(true) + msg)
}

175
plugSrc/mysql/build/stmt.go Normal file
View File

@ -0,0 +1,175 @@
package build
import (
"bytes"
"encoding/binary"
"fmt"
"math"
"strings"
"errors"
)
type Stmt struct {
ID uint32
Query string
ParamCount uint16
FieldCount uint16
Args []interface{}
}
func (stmt *Stmt) WriteToText() []byte {
var buf bytes.Buffer
str := fmt.Sprintf("预处理编号[%d]: '%s';\n", stmt.ID, stmt.Query)
buf.WriteString(str)
for i := 0; i < int(stmt.ParamCount); i++ {
var str string
switch stmt.Args[i].(type) {
case nil:
str = fmt.Sprintf("set @p%v = NULL;\n", i)
case []byte:
param := string(stmt.Args[i].([]byte))
str = fmt.Sprintf("set @p%v = '%s';\n", i, strings.TrimSpace(param))
default:
str = fmt.Sprintf("set @p%v = %v;\n", i, stmt.Args[i])
}
buf.WriteString(str)
}
str = fmt.Sprintf("执行预处理[%d]: ", stmt.ID)
buf.WriteString(str)
for i := 0; i < int(stmt.ParamCount); i++ {
if i == 0 {
buf.WriteString(" using ")
}
if i > 0 {
buf.WriteString(", ")
}
str := fmt.Sprintf("@p%v", i)
buf.WriteString(str)
}
buf.WriteString(";\n")
str = fmt.Sprintf("丢弃预处理[%d];\n", stmt.ID)
buf.WriteString(str)
return buf.Bytes()
}
func (stmt *Stmt) BindArgs(nullBitmap, paramTypes, paramValues []byte) error {
args := stmt.Args
pos := 0
var v []byte
var n = 0
var isNull bool
var err error
for i := 0; i < int(stmt.ParamCount); i++ {
//判断参数是否为null
if nullBitmap[i>>3]&(1<<(uint(i)%8)) > 0 {
args[i] = nil
continue
}
//参数类型
typ := paramTypes[i<<1]
unsigned := (paramTypes[(i<<1)+1] & 0x80) > 0
switch typ {
case MYSQL_TYPE_NULL:
args[i] = nil
continue
case MYSQL_TYPE_TINY:
value := paramValues[pos]
if unsigned {
args[i] = uint8(value)
} else {
args[i] = int8(value)
}
pos++
continue
case MYSQL_TYPE_SHORT, MYSQL_TYPE_YEAR:
value := binary.LittleEndian.Uint16(paramValues[pos : pos+2])
if unsigned {
args[i] = uint16(value)
} else {
args[i] = int16(value)
}
pos += 2
continue
case MYSQL_TYPE_INT24, MYSQL_TYPE_LONG:
value := binary.LittleEndian.Uint32(paramValues[pos : pos+4])
if unsigned {
args[i] = uint32(value)
} else {
args[i] = int32(value)
}
pos += 4
continue
case MYSQL_TYPE_LONGLONG:
value := binary.LittleEndian.Uint64(paramValues[pos : pos+8])
if unsigned {
args[i] = value
} else {
args[i] = int64(value)
}
pos += 8
continue
case MYSQL_TYPE_FLOAT:
value := math.Float32frombits(binary.LittleEndian.Uint32(paramValues[pos : pos+4]))
args[i] = float32(value)
pos += 4
continue
case MYSQL_TYPE_DOUBLE:
value := math.Float64frombits(binary.LittleEndian.Uint64(paramValues[pos : pos+8]))
args[i] = value
pos += 8
continue
case MYSQL_TYPE_DECIMAL, MYSQL_TYPE_NEWDECIMAL,
MYSQL_TYPE_VARCHAR, MYSQL_TYPE_BIT,
MYSQL_TYPE_ENUM, MYSQL_TYPE_SET,
MYSQL_TYPE_TINY_BLOB, MYSQL_TYPE_MEDIUM_BLOB, MYSQL_TYPE_LONG_BLOB, MYSQL_TYPE_BLOB,
MYSQL_TYPE_VAR_STRING, MYSQL_TYPE_STRING,
MYSQL_TYPE_GEOMETRY,
MYSQL_TYPE_DATE, MYSQL_TYPE_NEWDATE, MYSQL_TYPE_TIMESTAMP, MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIME:
v, isNull, n, err = LengthEncodedString(paramValues[pos:])
pos += n
if err != nil {
return err
}
if !isNull {
args[i] = v
continue
} else {
args[i] = nil
continue
}
default:
return errors.New(fmt.Sprintf("预处理未知类型 %d", typ))
}
}
return nil
}

View File

@ -0,0 +1,94 @@
package build
import (
"bytes"
"encoding/binary"
"io"
"time"
)
func GetNowStr(isClient bool) string {
var msg string
msg += time.Now().Format("2006-01-02 15:04:05")
if isClient {
msg += "| cli -> ser |"
}else{
msg += "| ser -> cli |"
}
return msg
}
func ReadStringFromByte(b []byte) (string,int) {
var l int
l = bytes.IndexByte(b, 0x00)
if l == -1 {
l = len(b)
}
return string(b[0:l]), l
}
func LengthBinary(b []byte) (uint32, int) {
var first = int(b[0])
if first > 0 && first <= 250 {
return uint32(first), 1
}
if first == 251 {
return 0,1
}
if first == 252 {
return binary.LittleEndian.Uint32(b[1:2]),1
}
if first == 253 {
return binary.LittleEndian.Uint32(b[1:4]),3
}
if first == 254 {
return binary.LittleEndian.Uint32(b[1:9]),8
}
return 0,0
}
func LengthEncodedInt(input []byte) (num uint64, isNull bool, n int) {
switch input[0] {
case 0xfb:
n = 1
isNull = true
return
case 0xfc:
num = uint64(input[1]) | uint64(input[2])<<8
n = 3
return
case 0xfd:
num = uint64(input[1]) | uint64(input[2])<<8 | uint64(input[3])<<16
n = 4
return
case 0xfe:
num = uint64(input[1]) | uint64(input[2])<<8 | uint64(input[3])<<16 |
uint64(input[4])<<24 | uint64(input[5])<<32 | uint64(input[6])<<40 |
uint64(input[7])<<48 | uint64(input[8])<<56
n = 9
return
}
num = uint64(input[0])
n = 1
return
}
func LengthEncodedString(b []byte) ([]byte, bool, int, error) {
num, isNull, n := LengthEncodedInt(b)
if num < 1 {
return nil, isNull, n, nil
}
n += int(num)
if len(b) >= n {
return b[n-int(num) : n], false, n, nil
}
return nil, false, n, io.EOF
}

View File

@ -0,0 +1,126 @@
package build
import (
"github.com/google/gopacket"
"io"
"strings"
"fmt"
"strconv"
"bufio"
)
type Redis struct {
port int
version string
cmd chan string
done chan bool
}
const (
Port int = 6379
Version string = "0.1"
CmdPort string = "-p"
)
var redis = &Redis {
port:Port,
version:Version,
}
func NewInstance() *Redis{
return redis
}
/**
解析流
*/
func (red Redis) ResolveStream(net, transport gopacket.Flow, r io.Reader) {
//只解析clint发出去的包
buf := bufio.NewReader(r)
var cmd string
var cmdCount = 0
for {
line, _, _ := buf.ReadLine()
//判断链接是否断开
if len(line) == 0 {
buff := make([]byte, 1)
_, err := r.Read(buff)
if err == io.EOF {
red.done <- true
return
}
}
//过滤无用数据
if !strings.HasPrefix(string(line), "*") {
continue
}
//过滤服务器返回数据
if strings.EqualFold(transport.Src().String(), strconv.Itoa(red.port)) == true {
continue
}
//解析
l := string(line[1])
cmdCount, _ = strconv.Atoi(l)
cmd = ""
for j := 0; j < cmdCount * 2; j++ {
c, _, _ := buf.ReadLine()
if j & 1 == 0 {
continue
}
cmd += " " + string(c)
}
fmt.Println(cmd)
}
}
/**
SetOption
*/
func (red *Redis) SetFlag(flg []string) {
c := len(flg)
if c == 0 {
return
}
if c >> 1 != 1 {
panic("Mysql参数数量不正确!")
}
for i:=0;i<c;i=i+2 {
key := flg[i]
val := flg[i+1]
switch key {
case CmdPort:
port, err := strconv.Atoi(val);
redis.port = port
if err != nil {
panic("端口数不正确")
}
if port < 0 || port > 65535 {
panic("参数不正确: 端口范围(0-65535)")
}
break
default:
panic("参数不正确")
}
}
}
/**
BPFFilter
*/
func (red *Redis) BPFFilter() string {
return "tcp and port "+strconv.Itoa(redis.port);
}
/**
Version
*/
func (red *Redis) Version() string {
return red.version;
}