feat: add claude and bard

This commit is contained in:
Yidadaa 2023-11-07 23:22:11 +08:00
parent 5610f423d0
commit cdf0311d27
20 changed files with 580 additions and 394 deletions

View File

@ -0,0 +1,29 @@
export const AnthropicConfig = {
model: {
model: "claude-instant-1",
summarizeModel: "claude-instant-1",
max_tokens_to_sample: 8192,
temperature: 0.5,
top_p: 0.7,
top_k: 5,
},
provider: {
name: "Anthropic" as const,
endpoint: "https://api.anthropic.com",
apiKey: "",
customModels: "",
version: "2023-06-01",
models: [
{
name: "claude-instant-1",
available: true,
},
{
name: "claude-2",
available: true,
},
],
},
};

View File

@ -0,0 +1,233 @@
import { ModelConfig, ProviderConfig } from "@/app/store";
import { createLogger } from "@/app/utils/log";
import { getAuthKey } from "../common/auth";
import { API_PREFIX, AnthropicPath, ApiPath } from "@/app/constant";
import { getApiPath } from "@/app/utils/path";
import { trimEnd } from "@/app/utils/string";
import { Anthropic } from "./types";
import { ChatOptions, LLMModel, LLMUsage, RequestMessage } from "../types";
import { omit } from "@/app/utils/object";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import Locale from "@/app/locales";
import { AnthropicConfig } from "./config";
export function createAnthropicClient(
providerConfigs: ProviderConfig,
modelConfig: ModelConfig,
) {
const anthropicConfig = { ...providerConfigs.anthropic };
const logger = createLogger("[Anthropic]");
const anthropicModelConfig = { ...modelConfig.anthropic };
return {
headers() {
return {
"Content-Type": "application/json",
"x-api-key": getAuthKey(anthropicConfig.apiKey),
"anthropic-version": anthropicConfig.version,
};
},
path(path: AnthropicPath): string {
let baseUrl: string = anthropicConfig.endpoint;
// if endpoint is empty, use default endpoint
if (baseUrl.trim().length === 0) {
baseUrl = getApiPath(ApiPath.Anthropic);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(API_PREFIX)) {
baseUrl = "https://" + baseUrl;
}
baseUrl = trimEnd(baseUrl, "/");
return `${baseUrl}/${path}`;
},
extractMessage(res: Anthropic.ChatResponse) {
return res.completion;
},
beforeRequest(options: ChatOptions, stream = false) {
const ClaudeMapper: Record<RequestMessage["role"], string> = {
assistant: "Assistant",
user: "Human",
system: "Human",
};
const prompt = options.messages
.map((v) => ({
role: ClaudeMapper[v.role] ?? "Human",
content: v.content,
}))
.map((v) => `\n\n${v.role}: ${v.content}`)
.join("");
if (options.shouldSummarize) {
anthropicModelConfig.model = anthropicModelConfig.summarizeModel;
}
const requestBody: Anthropic.ChatRequest = {
prompt,
stream,
...omit(anthropicModelConfig, "summarizeModel"),
};
const path = this.path(AnthropicPath.Chat);
logger.log("path = ", path, requestBody);
const controller = new AbortController();
options.onController?.(controller);
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: this.headers(),
mode: "no-cors" as RequestMode,
};
return {
path,
payload,
controller,
};
},
async chat(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(
options,
false,
);
controller.signal.onabort = () => options.onFinish("");
const res = await fetch(path, payload);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},
async chatStream(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(options, true);
const context = {
text: "",
finished: false,
};
const finish = () => {
if (!context.finished) {
options.onFinish(context.text);
context.finished = true;
}
};
controller.signal.onabort = finish;
logger.log(payload);
fetchEventSource(path, {
...payload,
async onopen(res) {
const contentType = res.headers.get("content-type");
logger.log("response content type: ", contentType);
if (contentType?.startsWith("text/plain")) {
context.text = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [context.text];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
context.text = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || context.finished) {
return finish();
}
const chunk = msg.data;
try {
const chunkJson = JSON.parse(
chunk,
) as Anthropic.ChatStreamResponse;
const delta = chunkJson.completion;
if (delta) {
context.text += delta;
options.onUpdate?.(context.text, delta);
}
} catch (e) {
logger.error("[Request] parse error", chunk, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
},
openWhenHidden: true,
});
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},
async usage() {
return {
used: 0,
total: 0,
} as LLMUsage;
},
async models(): Promise<LLMModel[]> {
const customModels = anthropicConfig.customModels
.split(",")
.map((v) => v.trim())
.filter((v) => !!v)
.map((v) => ({
name: v,
available: true,
}));
return [...AnthropicConfig.provider.models.slice(), ...customModels];
},
};
}

View File

@ -0,0 +1,24 @@
export namespace Anthropic {
export interface ChatRequest {
model: string; // The model that will complete your prompt.
prompt: string; // The prompt that you want Claude to complete.
max_tokens_to_sample: number; // The maximum number of tokens to generate before stopping.
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
temperature?: number; // Amount of randomness injected into the response.
top_p?: number; // Use nucleus sampling.
top_k?: number; // Only sample from the top K options for each subsequent token.
metadata?: object; // An object describing metadata about the request.
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
}
export interface ChatResponse {
completion: string;
stop_reason: "stop_sequence" | "max_tokens";
model: string;
}
export type ChatStreamResponse = ChatResponse & {
stop?: string;
log_id: string;
};
}

View File

@ -6,23 +6,22 @@ export function bearer(value: string) {
return `Bearer ${value.trim()}`;
}
export function getAuthHeaders(apiKey = "") {
export function getAuthKey(apiKey = "") {
const accessStore = useAccessStore.getState();
const isApp = !!getClientConfig()?.isApp;
let headers: Record<string, string> = {};
let authKey = "";
if (apiKey) {
// use user's api key first
headers.Authorization = bearer(apiKey);
authKey = bearer(apiKey);
} else if (
accessStore.enabledAccessControl() &&
!isApp &&
!!accessStore.accessCode
) {
// or use access code
headers.Authorization = bearer(ACCESS_CODE_PREFIX + accessStore.accessCode);
authKey = bearer(ACCESS_CODE_PREFIX + accessStore.accessCode);
}
return headers;
return authKey;
}

View File

@ -1,5 +0,0 @@
export const COMMON_PROVIDER_CONFIG = {
customModels: "",
models: [] as string[],
autoFetchModels: false, // fetch available models from server or not
};

View File

@ -2,9 +2,11 @@ import { MaskConfig, ProviderConfig } from "../store";
import { shareToShareGPT } from "./common/share";
import { createOpenAiClient } from "./openai";
import { ChatControllerPool } from "./common/controller";
import { createAnthropicClient } from "./anthropic";
export const LLMClients = {
openai: createOpenAiClient,
anthropic: createAnthropicClient,
};
export function createLLMClient(

View File

@ -1,5 +1,3 @@
import { COMMON_PROVIDER_CONFIG } from "../common/config";
export const OpenAIConfig = {
model: {
model: "gpt-3.5-turbo" as string,
@ -12,9 +10,57 @@ export const OpenAIConfig = {
frequency_penalty: 0,
},
provider: {
name: "OpenAI",
name: "OpenAI" as const,
endpoint: "https://api.openai.com",
apiKey: "",
...COMMON_PROVIDER_CONFIG,
customModels: "",
autoFetchModels: false, // fetch available models from server or not
models: [
{
name: "gpt-4",
available: true,
},
{
name: "gpt-4-0314",
available: true,
},
{
name: "gpt-4-0613",
available: true,
},
{
name: "gpt-4-32k",
available: true,
},
{
name: "gpt-4-32k-0314",
available: true,
},
{
name: "gpt-4-32k-0613",
available: true,
},
{
name: "gpt-3.5-turbo",
available: true,
},
{
name: "gpt-3.5-turbo-0301",
available: true,
},
{
name: "gpt-3.5-turbo-0613",
available: true,
},
{
name: "gpt-3.5-turbo-16k",
available: true,
},
{
name: "gpt-3.5-turbo-16k-0613",
available: true,
},
],
},
};

View File

@ -3,12 +3,7 @@ import {
fetchEventSource,
} from "@fortaine/fetch-event-source";
import {
API_PREFIX,
ApiPath,
DEFAULT_MODELS,
OpenaiPath,
} from "@/app/constant";
import { API_PREFIX, ApiPath, OpenaiPath } from "@/app/constant";
import { ModelConfig, ProviderConfig } from "@/app/store";
import { OpenAI } from "./types";
@ -21,7 +16,8 @@ import { getApiPath } from "@/app/utils/path";
import { trimEnd } from "@/app/utils/string";
import { omit } from "@/app/utils/object";
import { createLogger } from "@/app/utils/log";
import { getAuthHeaders } from "../common/auth";
import { getAuthKey } from "../common/auth";
import { OpenAIConfig } from "./config";
export function createOpenAiClient(
providerConfigs: ProviderConfig,
@ -35,12 +31,12 @@ export function createOpenAiClient(
headers() {
return {
"Content-Type": "application/json",
...getAuthHeaders(openaiConfig.apiKey),
Authorization: getAuthKey(),
};
},
path(path: OpenaiPath): string {
let baseUrl = openaiConfig.endpoint;
let baseUrl: string = openaiConfig.endpoint;
// if endpoint is empty, use default endpoint
if (baseUrl.trim().length === 0) {
@ -206,59 +202,9 @@ export function createOpenAiClient(
},
async usage() {
const formatDate = (d: Date) =>
`${d.getFullYear()}-${(d.getMonth() + 1)
.toString()
.padStart(2, "0")}-${d.getDate().toString().padStart(2, "0")}`;
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
const now = new Date();
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
const startDate = formatDate(startOfMonth);
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
const [used, subs] = await Promise.all([
fetch(
`${this.path(
OpenaiPath.Usage,
)}?start_date=${startDate}&end_date=${endDate}`,
{
method: "GET",
headers: this.headers(),
},
),
fetch(this.path(OpenaiPath.Subs), {
method: "GET",
headers: this.headers(),
}),
]);
if (!used.ok || !subs.ok) {
throw new Error("Failed to query usage from openai");
}
const response = (await used.json()) as {
total_usage?: number;
error?: {
type: string;
message: string;
};
};
const total = (await subs.json()) as {
hard_limit_usd?: number;
};
if (response.error?.type) {
throw Error(response.error?.message);
}
response.total_usage = Math.round(response.total_usage ?? 0) / 100;
total.hard_limit_usd =
Math.round((total.hard_limit_usd ?? 0) * 100) / 100;
return {
used: response.total_usage,
total: total.hard_limit_usd,
used: 0,
total: 0,
} as LLMUsage;
},
@ -266,13 +212,14 @@ export function createOpenAiClient(
const customModels = openaiConfig.customModels
.split(",")
.map((v) => v.trim())
.filter((v) => !!v)
.map((v) => ({
name: v,
available: true,
}));
if (!openaiConfig.autoFetchModels) {
return [...DEFAULT_MODELS.slice(), ...customModels];
return [...OpenAIConfig.provider.models.slice(), ...customModels];
}
const res = await fetch(this.path(OpenaiPath.ListModel), {

View File

@ -1,5 +1,3 @@
import { DEFAULT_MODELS } from "../constant";
export interface LLMUsage {
used: number;
total: number;
@ -14,8 +12,6 @@ export interface LLMModel {
export const ROLES = ["system", "user", "assistant"] as const;
export type MessageRole = (typeof ROLES)[number];
export type ChatModel = (typeof DEFAULT_MODELS)[number]["name"];
export interface RequestMessage {
role: MessageRole;
content: string;

View File

@ -0,0 +1,79 @@
import { ModelConfig } from "@/app/store";
import { ModelConfigProps } from "../types";
import { ListItem, Select } from "../../ui-lib";
import Locale from "@/app/locales";
import { InputRange } from "../../input-range";
export function AnthropicModelConfig(
props: ModelConfigProps<ModelConfig["anthropic"]>,
) {
return (
<>
<ListItem title={Locale.Settings.Model}>
<Select
value={props.config.model}
onChange={(e) => {
props.updateConfig(
(config) => (config.model = e.currentTarget.value),
);
}}
>
{props.models.map((v, i) => (
<option value={v.name} key={i} disabled={!v.available}>
{v.name}
</option>
))}
</Select>
</ListItem>
<ListItem
title={Locale.Settings.Temperature.Title}
subTitle={Locale.Settings.Temperature.SubTitle}
>
<InputRange
value={props.config.temperature?.toFixed(1)}
min="0"
max="1" // lets limit it to 0-1
step="0.1"
onChange={(e) => {
props.updateConfig(
(config) => (config.temperature = e.currentTarget.valueAsNumber),
);
}}
></InputRange>
</ListItem>
<ListItem
title={Locale.Settings.TopP.Title}
subTitle={Locale.Settings.TopP.SubTitle}
>
<InputRange
value={(props.config.top_p ?? 1).toFixed(1)}
min="0"
max="1"
step="0.1"
onChange={(e) => {
props.updateConfig(
(config) => (config.top_p = e.currentTarget.valueAsNumber),
);
}}
></InputRange>
</ListItem>
<ListItem
title={Locale.Settings.MaxTokens.Title}
subTitle={Locale.Settings.MaxTokens.SubTitle}
>
<input
type="number"
min={100}
max={100000}
value={props.config.max_tokens_to_sample}
onChange={(e) =>
props.updateConfig(
(config) =>
(config.max_tokens_to_sample = e.currentTarget.valueAsNumber),
)
}
></input>
</ListItem>
</>
);
}

View File

@ -0,0 +1,70 @@
import { ProviderConfig } from "@/app/store";
import { ProviderConfigProps } from "../types";
import { ListItem, PasswordInput } from "../../ui-lib";
import Locale from "@/app/locales";
import { REMOTE_API_HOST } from "@/app/constant";
export function AnthropicProviderConfig(
props: ProviderConfigProps<ProviderConfig["anthropic"]>,
) {
return (
<>
<ListItem
title={Locale.Settings.Endpoint.Title}
subTitle={Locale.Settings.Endpoint.SubTitle}
>
<input
type="text"
value={props.config.endpoint}
placeholder={REMOTE_API_HOST}
onChange={(e) =>
props.updateConfig(
(config) => (config.endpoint = e.currentTarget.value),
)
}
></input>
</ListItem>
<ListItem
title={Locale.Settings.Token.Title}
subTitle={Locale.Settings.Token.SubTitle}
>
<PasswordInput
value={props.config.apiKey}
type="text"
placeholder={Locale.Settings.Token.Placeholder}
onChange={(e) => {
props.updateConfig(
(config) => (config.apiKey = e.currentTarget.value),
);
}}
/>
</ListItem>
<ListItem title={"Anthropic Version"} subTitle={"填写 API 版本号"}>
<PasswordInput
value={props.config.version}
type="text"
onChange={(e) => {
props.updateConfig(
(config) => (config.version = e.currentTarget.value),
);
}}
/>
</ListItem>
<ListItem
title={Locale.Settings.CustomModel.Title}
subTitle={Locale.Settings.CustomModel.SubTitle}
>
<input
type="text"
value={props.config.customModels}
placeholder="model1,model2,model3"
onChange={(e) =>
props.updateConfig(
(config) => (config.customModels = e.currentTarget.value),
)
}
></input>
</ListItem>
</>
);
}

View File

@ -11,6 +11,10 @@ import { OpenAIProviderConfig } from "./openai/provider";
import { ListItem, Select } from "../ui-lib";
import Locale from "@/app/locales";
import { InputRange } from "../input-range";
import { OpenAIConfig } from "@/app/client/openai/config";
import { AnthropicModelConfig } from "./anthropic/model";
import { AnthropicConfig } from "@/app/client/anthropic/config";
import { AnthropicProviderConfig } from "./anthropic/provider";
export function ModelConfigList(props: {
provider: LLMProvider;
@ -24,16 +28,17 @@ export function ModelConfigList(props: {
updateConfig={(update) => {
props.updateConfig((config) => update(config.openai));
}}
models={[
{
name: "gpt-3.5-turbo",
available: true,
},
{
name: "gpt-4",
available: true,
},
]}
models={OpenAIConfig.provider.models}
/>
);
} else if (props.provider === "anthropic") {
return (
<AnthropicModelConfig
config={props.config.anthropic}
updateConfig={(update) => {
props.updateConfig((config) => update(config.anthropic));
}}
models={AnthropicConfig.provider.models}
/>
);
}
@ -55,6 +60,15 @@ export function ProviderConfigList(props: {
}}
/>
);
} else if (props.provider === "anthropic") {
return (
<AnthropicProviderConfig
config={props.config.anthropic}
updateConfig={(update) => {
props.updateConfig((config) => update(config.anthropic));
}}
/>
);
}
return null;

View File

@ -3,6 +3,8 @@ import { ProviderConfigProps } from "../types";
import { ListItem, PasswordInput } from "../../ui-lib";
import Locale from "@/app/locales";
import { REMOTE_API_HOST } from "@/app/constant";
import { IconButton } from "../../button";
import ReloadIcon from "@/app/icons/reload.svg";
export function OpenAIProviderConfig(
props: ProviderConfigProps<ProviderConfig["openai"]>,
@ -58,6 +60,7 @@ export function OpenAIProviderConfig(
<ListItem title="自动拉取可用模型" subTitle="尝试拉取所有可用模型">
<input
type="checkbox"
style={{ marginLeft: 10 }}
checked={props.config.autoFetchModels}
onChange={(e) =>
props.updateConfig(

View File

@ -1,139 +0,0 @@
import { ModalConfigValidator, ModelConfig, useAppConfig } from "../store";
import Locale from "../locales";
import { InputRange } from "./input-range";
import { ListItem, Select } from "./ui-lib";
export function _ModelConfigList(props: {
modelConfig: ModelConfig;
updateConfig: (updater: (config: ModelConfig) => void) => void;
}) {
return null;
/*
const config = useAppConfig();
return (
<>
<ListItem title={Locale.Settings.Model}>
<Select
value={props.modelConfig.model}
onChange={(e) => {
props.updateConfig(
(config) =>
(config.model = ModalConfigValidator.model(
e.currentTarget.value,
)),
);
}}
>
{config.allModels().map((v, i) => (
<option value={v.name} key={i} disabled={!v.available}>
{v.name}
</option>
))}
</Select>
</ListItem>
<ListItem
title={Locale.Settings.Temperature.Title}
subTitle={Locale.Settings.Temperature.SubTitle}
>
<InputRange
value={props.modelConfig.temperature?.toFixed(1)}
min="0"
max="1" // lets limit it to 0-1
step="0.1"
onChange={(e) => {
props.updateConfig(
(config) =>
(config.temperature = ModalConfigValidator.temperature(
e.currentTarget.valueAsNumber,
)),
);
}}
></InputRange>
</ListItem>
<ListItem
title={Locale.Settings.TopP.Title}
subTitle={Locale.Settings.TopP.SubTitle}
>
<InputRange
value={(props.modelConfig.top_p ?? 1).toFixed(1)}
min="0"
max="1"
step="0.1"
onChange={(e) => {
props.updateConfig(
(config) =>
(config.top_p = ModalConfigValidator.top_p(
e.currentTarget.valueAsNumber,
)),
);
}}
></InputRange>
</ListItem>
<ListItem
title={Locale.Settings.MaxTokens.Title}
subTitle={Locale.Settings.MaxTokens.SubTitle}
>
<input
type="number"
min={100}
max={100000}
value={props.modelConfig.max_tokens}
onChange={(e) =>
props.updateConfig(
(config) =>
(config.max_tokens = ModalConfigValidator.max_tokens(
e.currentTarget.valueAsNumber,
)),
)
}
></input>
</ListItem>
<ListItem
title={Locale.Settings.PresencePenalty.Title}
subTitle={Locale.Settings.PresencePenalty.SubTitle}
>
<InputRange
value={props.modelConfig.presence_penalty?.toFixed(1)}
min="-2"
max="2"
step="0.1"
onChange={(e) => {
props.updateConfig(
(config) =>
(config.presence_penalty =
ModalConfigValidator.presence_penalty(
e.currentTarget.valueAsNumber,
)),
);
}}
></InputRange>
</ListItem>
<ListItem
title={Locale.Settings.FrequencyPenalty.Title}
subTitle={Locale.Settings.FrequencyPenalty.SubTitle}
>
<InputRange
value={props.modelConfig.frequency_penalty?.toFixed(1)}
min="-2"
max="2"
step="0.1"
onChange={(e) => {
props.updateConfig(
(config) =>
(config.frequency_penalty =
ModalConfigValidator.frequency_penalty(
e.currentTarget.valueAsNumber,
)),
);
}}
></InputRange>
</ListItem>
</>
);
*/
}

View File

@ -37,8 +37,6 @@ import {
useUpdateStore,
useAccessStore,
useAppConfig,
LLMProvider,
LLMProviders,
} from "../store";
import Locale, {
@ -578,22 +576,6 @@ export function Settings() {
console.log("[Update] remote version ", updateStore.remoteVersion);
}
const usage = {
used: updateStore.used,
subscription: updateStore.subscription,
};
const [loadingUsage, setLoadingUsage] = useState(false);
function checkUsage(force = false) {
if (accessStore.hideBalanceQuery) {
return;
}
setLoadingUsage(true);
updateStore.updateUsage(force).finally(() => {
setLoadingUsage(false);
});
}
const accessStore = useAccessStore();
const enabledAccessControl = useMemo(
() => accessStore.enabledAccessControl(),
@ -610,7 +592,6 @@ export function Settings() {
useEffect(() => {
// checks per minutes
checkUpdate();
showUsage && checkUsage();
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
@ -806,6 +787,28 @@ export function Settings() {
</ListItem>
</List>
<List>
{showAccessCode ? (
<ListItem
title={Locale.Settings.AccessCode.Title}
subTitle={Locale.Settings.AccessCode.SubTitle}
>
<PasswordInput
value={accessStore.accessCode}
type="text"
placeholder={Locale.Settings.AccessCode.Placeholder}
onChange={(e) => {
accessStore.update(
(config) => (config.accessCode = e.currentTarget.value),
);
}}
/>
</ListItem>
) : (
<></>
)}
</List>
<SyncItems />
<List>
@ -875,56 +878,6 @@ export function Settings() {
</ListItem>
</List>
<List>
{showAccessCode ? (
<ListItem
title={Locale.Settings.AccessCode.Title}
subTitle={Locale.Settings.AccessCode.SubTitle}
>
<PasswordInput
value={accessStore.accessCode}
type="text"
placeholder={Locale.Settings.AccessCode.Placeholder}
onChange={(e) => {
accessStore.update(
(config) => (config.accessCode = e.currentTarget.value),
);
}}
/>
</ListItem>
) : (
<></>
)}
{!accessStore.hideUserApiKey ? <></> : null}
{!accessStore.hideBalanceQuery ? (
<ListItem
title={Locale.Settings.Usage.Title}
subTitle={
showUsage
? loadingUsage
? Locale.Settings.Usage.IsChecking
: Locale.Settings.Usage.SubTitle(
usage?.used ?? "[?]",
usage?.subscription ?? "[?]",
)
: Locale.Settings.Usage.NoAccess
}
>
{!showUsage || loadingUsage ? (
<div />
) : (
<IconButton
icon={<ResetIcon></ResetIcon>}
text={Locale.Settings.Usage.Check}
onClick={() => checkUsage(true)}
/>
)}
</ListItem>
) : null}
</List>
<List>
<ProviderSelectItem
value={config.globalMaskConfig.provider}

View File

@ -24,6 +24,7 @@ export const API_PREFIX = "/api";
export enum ApiPath {
OpenAI = "/api/openai",
Anthropic = "/api/anthropic",
Cors = "/api/cors",
Config = "/api/config",
}
@ -70,6 +71,10 @@ export enum OpenaiPath {
ListModel = "v1/models",
}
export enum AnthropicPath {
Chat = "v1/complete",
}
export const DEFAULT_INPUT_TEMPLATE = `{{input}}`; // input / time / model / lang
export const DEFAULT_SYSTEM_TEMPLATE = `
You are ChatGPT, a large language model trained by OpenAI.
@ -77,54 +82,5 @@ Knowledge cutoff: 2021-09
Current model: {{model}}
Current time: {{time}}`;
export const SUMMARIZE_MODEL = "gpt-3.5-turbo";
export const DEFAULT_MODELS = [
{
name: "gpt-4",
available: true,
},
{
name: "gpt-4-0314",
available: true,
},
{
name: "gpt-4-0613",
available: true,
},
{
name: "gpt-4-32k",
available: true,
},
{
name: "gpt-4-32k-0314",
available: true,
},
{
name: "gpt-4-32k-0613",
available: true,
},
{
name: "gpt-3.5-turbo",
available: true,
},
{
name: "gpt-3.5-turbo-0301",
available: true,
},
{
name: "gpt-3.5-turbo-0613",
available: true,
},
{
name: "gpt-3.5-turbo-16k",
available: true,
},
{
name: "gpt-3.5-turbo-16k-0613",
available: true,
},
] as const;
export const CHAT_PAGE_SIZE = 15;
export const MAX_RENDER_MSG_COUNT = 45;

View File

@ -1,7 +1,7 @@
import { REMOTE_API_HOST, DEFAULT_MODELS, StoreKey } from "../constant";
import { REMOTE_API_HOST, StoreKey } from "../constant";
import { getClientConfig } from "../config/client";
import { createPersistStore } from "../utils/store";
import { getAuthHeaders } from "../client/common/auth";
import { getAuthKey } from "../client/common/auth";
let fetchState = 0; // 0 not fetch, 1 fetching, 2 done
@ -39,7 +39,7 @@ export const useAccessStore = createPersistStore(
method: "post",
body: null,
headers: {
...getAuthHeaders(),
Authorization: getAuthKey(),
},
})
.then((res) => res.json())
@ -48,9 +48,7 @@ export const useAccessStore = createPersistStore(
set(() => ({ ...res }));
if (res.disableGPT4) {
DEFAULT_MODELS.forEach(
(m: any) => (m.available = !m.name.startsWith("gpt-4")),
);
// disable model
}
})
.catch(() => {

View File

@ -2,20 +2,9 @@ import { trimTopic } from "../utils";
import Locale, { getLang } from "../locales";
import { showToast } from "../components/ui-lib";
import {
LLMProvider,
MaskConfig,
ModelConfig,
ModelType,
useAppConfig,
} from "./config";
import { MaskConfig, useAppConfig } from "./config";
import { createEmptyMask, Mask } from "./mask";
import {
DEFAULT_INPUT_TEMPLATE,
DEFAULT_SYSTEM_TEMPLATE,
StoreKey,
SUMMARIZE_MODEL,
} from "../constant";
import { DEFAULT_INPUT_TEMPLATE, StoreKey } from "../constant";
import { ChatControllerPool } from "../client/common/controller";
import { prettyObject } from "../utils/format";
import { estimateTokenLength } from "../utils/token";
@ -85,11 +74,6 @@ function createEmptySession(): ChatSession {
};
}
function getSummarizeModel(currentModel: string) {
// if it is using gpt-* models, force to use 3.5 to summarize
return currentModel.startsWith("gpt") ? SUMMARIZE_MODEL : currentModel;
}
function countMessages(msgs: ChatMessage[]) {
return msgs.reduce((pre, cur) => pre + estimateTokenLength(cur.content), 0);
}
@ -291,6 +275,18 @@ export const useChatStore = createPersistStore(
return this.extractModelConfig(maskConfig);
},
getMaxTokens() {
const maskConfig = this.getCurrentMaskConfig();
if (maskConfig.provider === "openai") {
return maskConfig.modelConfig.openai.max_tokens;
} else if (maskConfig.provider === "anthropic") {
return maskConfig.modelConfig.anthropic.max_tokens_to_sample;
}
return 8192;
},
getClient() {
const appConfig = useAppConfig.getState();
const currentMaskConfig = get().getCurrentMaskConfig();
@ -463,7 +459,7 @@ export const useChatStore = createPersistStore(
: shortTermMemoryStartIndex;
// and if user has cleared history messages, we should exclude the memory too.
const contextStartIndex = Math.max(clearContextIndex, memoryStartIndex);
const maxTokenThreshold = modelConfig.max_tokens;
const maxTokenThreshold = this.getMaxTokens();
// get recent messages as much as possible
const reversedRecentMessages = [];
@ -546,7 +542,6 @@ export const useChatStore = createPersistStore(
});
}
const modelConfig = this.getCurrentModelConfig();
const summarizeIndex = Math.max(
session.lastSummarizeIndex,
session.clearContextIndex ?? 0,
@ -557,7 +552,7 @@ export const useChatStore = createPersistStore(
const historyMsgLength = countMessages(toBeSummarizedMsgs);
if (historyMsgLength > modelConfig?.max_tokens ?? 4000) {
if (historyMsgLength > this.getMaxTokens()) {
const n = toBeSummarizedMsgs.length;
toBeSummarizedMsgs = toBeSummarizedMsgs.slice(
Math.max(0, n - chatConfig.historyMessageCount),

View File

@ -2,7 +2,6 @@ import { isMacOS } from "../utils";
import { getClientConfig } from "../config/client";
import {
DEFAULT_INPUT_TEMPLATE,
DEFAULT_MODELS,
DEFAULT_SIDEBAR_WIDTH,
StoreKey,
} from "../constant";
@ -10,8 +9,7 @@ import { createPersistStore } from "../utils/store";
import { OpenAIConfig } from "../client/openai/config";
import { api } from "../client";
import { SubmitKey, Theme } from "../typing";
export type ModelType = (typeof DEFAULT_MODELS)[number]["name"];
import { AnthropicConfig } from "../client/anthropic/config";
export const DEFAULT_CHAT_CONFIG = {
enableAutoGenerateTitle: true,
@ -25,17 +23,13 @@ export type ChatConfig = typeof DEFAULT_CHAT_CONFIG;
export const DEFAULT_PROVIDER_CONFIG = {
openai: OpenAIConfig.provider,
anthropic: AnthropicConfig.provider,
// azure: {
// endpoint: "https://api.openai.com",
// apiKey: "",
// version: "",
// ...COMMON_PROVIDER_CONFIG,
// },
// claude: {
// endpoint: "https://api.anthropic.com",
// apiKey: "",
// ...COMMON_PROVIDER_CONFIG,
// },
// google: {
// endpoint: "https://api.anthropic.com",
// apiKey: "",
@ -45,6 +39,7 @@ export const DEFAULT_PROVIDER_CONFIG = {
export const DEFAULT_MODEL_CONFIG = {
openai: OpenAIConfig.model,
anthropic: AnthropicConfig.model,
// azure: {
// model: "gpt-3.5-turbo" as string,
// summarizeModel: "gpt-3.5-turbo",
@ -55,15 +50,6 @@ export const DEFAULT_MODEL_CONFIG = {
// presence_penalty: 0,
// frequency_penalty: 0,
// },
// claude: {
// model: "claude-2",
// summarizeModel: "claude-2",
//
// max_tokens_to_sample: 100000,
// temperature: 1,
// top_p: 0.7,
// top_k: 1,
// },
// google: {
// model: "chat-bison-001",
// summarizeModel: "claude-2",
@ -125,7 +111,7 @@ export function limitNumber(
export const ModalConfigValidator = {
model(x: string) {
return x as ModelType;
return x as string;
},
max_tokens(x: number) {
return limitNumber(x, 0, 100000, 2000);

View File

@ -9,7 +9,7 @@
},
"package": {
"productName": "ChatGPT Next Web",
"version": "2.9.9"
"version": "3.0.0"
},
"tauri": {
"allowlist": {