feat: add claude and bard
This commit is contained in:
parent
5610f423d0
commit
cdf0311d27
|
@ -0,0 +1,29 @@
|
|||
export const AnthropicConfig = {
|
||||
model: {
|
||||
model: "claude-instant-1",
|
||||
summarizeModel: "claude-instant-1",
|
||||
|
||||
max_tokens_to_sample: 8192,
|
||||
temperature: 0.5,
|
||||
top_p: 0.7,
|
||||
top_k: 5,
|
||||
},
|
||||
provider: {
|
||||
name: "Anthropic" as const,
|
||||
endpoint: "https://api.anthropic.com",
|
||||
apiKey: "",
|
||||
customModels: "",
|
||||
version: "2023-06-01",
|
||||
|
||||
models: [
|
||||
{
|
||||
name: "claude-instant-1",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "claude-2",
|
||||
available: true,
|
||||
},
|
||||
],
|
||||
},
|
||||
};
|
|
@ -0,0 +1,233 @@
|
|||
import { ModelConfig, ProviderConfig } from "@/app/store";
|
||||
import { createLogger } from "@/app/utils/log";
|
||||
import { getAuthKey } from "../common/auth";
|
||||
import { API_PREFIX, AnthropicPath, ApiPath } from "@/app/constant";
|
||||
import { getApiPath } from "@/app/utils/path";
|
||||
import { trimEnd } from "@/app/utils/string";
|
||||
import { Anthropic } from "./types";
|
||||
import { ChatOptions, LLMModel, LLMUsage, RequestMessage } from "../types";
|
||||
import { omit } from "@/app/utils/object";
|
||||
import {
|
||||
EventStreamContentType,
|
||||
fetchEventSource,
|
||||
} from "@fortaine/fetch-event-source";
|
||||
import { prettyObject } from "@/app/utils/format";
|
||||
import Locale from "@/app/locales";
|
||||
import { AnthropicConfig } from "./config";
|
||||
|
||||
export function createAnthropicClient(
|
||||
providerConfigs: ProviderConfig,
|
||||
modelConfig: ModelConfig,
|
||||
) {
|
||||
const anthropicConfig = { ...providerConfigs.anthropic };
|
||||
const logger = createLogger("[Anthropic]");
|
||||
const anthropicModelConfig = { ...modelConfig.anthropic };
|
||||
|
||||
return {
|
||||
headers() {
|
||||
return {
|
||||
"Content-Type": "application/json",
|
||||
"x-api-key": getAuthKey(anthropicConfig.apiKey),
|
||||
"anthropic-version": anthropicConfig.version,
|
||||
};
|
||||
},
|
||||
|
||||
path(path: AnthropicPath): string {
|
||||
let baseUrl: string = anthropicConfig.endpoint;
|
||||
|
||||
// if endpoint is empty, use default endpoint
|
||||
if (baseUrl.trim().length === 0) {
|
||||
baseUrl = getApiPath(ApiPath.Anthropic);
|
||||
}
|
||||
|
||||
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(API_PREFIX)) {
|
||||
baseUrl = "https://" + baseUrl;
|
||||
}
|
||||
|
||||
baseUrl = trimEnd(baseUrl, "/");
|
||||
|
||||
return `${baseUrl}/${path}`;
|
||||
},
|
||||
|
||||
extractMessage(res: Anthropic.ChatResponse) {
|
||||
return res.completion;
|
||||
},
|
||||
|
||||
beforeRequest(options: ChatOptions, stream = false) {
|
||||
const ClaudeMapper: Record<RequestMessage["role"], string> = {
|
||||
assistant: "Assistant",
|
||||
user: "Human",
|
||||
system: "Human",
|
||||
};
|
||||
|
||||
const prompt = options.messages
|
||||
.map((v) => ({
|
||||
role: ClaudeMapper[v.role] ?? "Human",
|
||||
content: v.content,
|
||||
}))
|
||||
.map((v) => `\n\n${v.role}: ${v.content}`)
|
||||
.join("");
|
||||
|
||||
if (options.shouldSummarize) {
|
||||
anthropicModelConfig.model = anthropicModelConfig.summarizeModel;
|
||||
}
|
||||
|
||||
const requestBody: Anthropic.ChatRequest = {
|
||||
prompt,
|
||||
stream,
|
||||
...omit(anthropicModelConfig, "summarizeModel"),
|
||||
};
|
||||
|
||||
const path = this.path(AnthropicPath.Chat);
|
||||
|
||||
logger.log("path = ", path, requestBody);
|
||||
|
||||
const controller = new AbortController();
|
||||
options.onController?.(controller);
|
||||
|
||||
const payload = {
|
||||
method: "POST",
|
||||
body: JSON.stringify(requestBody),
|
||||
signal: controller.signal,
|
||||
headers: this.headers(),
|
||||
mode: "no-cors" as RequestMode,
|
||||
};
|
||||
|
||||
return {
|
||||
path,
|
||||
payload,
|
||||
controller,
|
||||
};
|
||||
},
|
||||
|
||||
async chat(options: ChatOptions) {
|
||||
try {
|
||||
const { path, payload, controller } = this.beforeRequest(
|
||||
options,
|
||||
false,
|
||||
);
|
||||
|
||||
controller.signal.onabort = () => options.onFinish("");
|
||||
|
||||
const res = await fetch(path, payload);
|
||||
const resJson = await res.json();
|
||||
|
||||
const message = this.extractMessage(resJson);
|
||||
options.onFinish(message);
|
||||
} catch (e) {
|
||||
logger.error("failed to chat", e);
|
||||
options.onError?.(e as Error);
|
||||
}
|
||||
},
|
||||
|
||||
async chatStream(options: ChatOptions) {
|
||||
try {
|
||||
const { path, payload, controller } = this.beforeRequest(options, true);
|
||||
|
||||
const context = {
|
||||
text: "",
|
||||
finished: false,
|
||||
};
|
||||
|
||||
const finish = () => {
|
||||
if (!context.finished) {
|
||||
options.onFinish(context.text);
|
||||
context.finished = true;
|
||||
}
|
||||
};
|
||||
|
||||
controller.signal.onabort = finish;
|
||||
|
||||
logger.log(payload);
|
||||
|
||||
fetchEventSource(path, {
|
||||
...payload,
|
||||
async onopen(res) {
|
||||
const contentType = res.headers.get("content-type");
|
||||
logger.log("response content type: ", contentType);
|
||||
|
||||
if (contentType?.startsWith("text/plain")) {
|
||||
context.text = await res.clone().text();
|
||||
return finish();
|
||||
}
|
||||
|
||||
if (
|
||||
!res.ok ||
|
||||
!res.headers
|
||||
.get("content-type")
|
||||
?.startsWith(EventStreamContentType) ||
|
||||
res.status !== 200
|
||||
) {
|
||||
const responseTexts = [context.text];
|
||||
let extraInfo = await res.clone().text();
|
||||
try {
|
||||
const resJson = await res.clone().json();
|
||||
extraInfo = prettyObject(resJson);
|
||||
} catch {}
|
||||
|
||||
if (res.status === 401) {
|
||||
responseTexts.push(Locale.Error.Unauthorized);
|
||||
}
|
||||
|
||||
if (extraInfo) {
|
||||
responseTexts.push(extraInfo);
|
||||
}
|
||||
|
||||
context.text = responseTexts.join("\n\n");
|
||||
|
||||
return finish();
|
||||
}
|
||||
},
|
||||
onmessage(msg) {
|
||||
if (msg.data === "[DONE]" || context.finished) {
|
||||
return finish();
|
||||
}
|
||||
const chunk = msg.data;
|
||||
try {
|
||||
const chunkJson = JSON.parse(
|
||||
chunk,
|
||||
) as Anthropic.ChatStreamResponse;
|
||||
const delta = chunkJson.completion;
|
||||
if (delta) {
|
||||
context.text += delta;
|
||||
options.onUpdate?.(context.text, delta);
|
||||
}
|
||||
} catch (e) {
|
||||
logger.error("[Request] parse error", chunk, msg);
|
||||
}
|
||||
},
|
||||
onclose() {
|
||||
finish();
|
||||
},
|
||||
onerror(e) {
|
||||
options.onError?.(e);
|
||||
},
|
||||
openWhenHidden: true,
|
||||
});
|
||||
} catch (e) {
|
||||
logger.error("failed to chat", e);
|
||||
options.onError?.(e as Error);
|
||||
}
|
||||
},
|
||||
|
||||
async usage() {
|
||||
return {
|
||||
used: 0,
|
||||
total: 0,
|
||||
} as LLMUsage;
|
||||
},
|
||||
|
||||
async models(): Promise<LLMModel[]> {
|
||||
const customModels = anthropicConfig.customModels
|
||||
.split(",")
|
||||
.map((v) => v.trim())
|
||||
.filter((v) => !!v)
|
||||
.map((v) => ({
|
||||
name: v,
|
||||
available: true,
|
||||
}));
|
||||
|
||||
return [...AnthropicConfig.provider.models.slice(), ...customModels];
|
||||
},
|
||||
};
|
||||
}
|
|
@ -0,0 +1,24 @@
|
|||
export namespace Anthropic {
|
||||
export interface ChatRequest {
|
||||
model: string; // The model that will complete your prompt.
|
||||
prompt: string; // The prompt that you want Claude to complete.
|
||||
max_tokens_to_sample: number; // The maximum number of tokens to generate before stopping.
|
||||
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
|
||||
temperature?: number; // Amount of randomness injected into the response.
|
||||
top_p?: number; // Use nucleus sampling.
|
||||
top_k?: number; // Only sample from the top K options for each subsequent token.
|
||||
metadata?: object; // An object describing metadata about the request.
|
||||
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
|
||||
}
|
||||
|
||||
export interface ChatResponse {
|
||||
completion: string;
|
||||
stop_reason: "stop_sequence" | "max_tokens";
|
||||
model: string;
|
||||
}
|
||||
|
||||
export type ChatStreamResponse = ChatResponse & {
|
||||
stop?: string;
|
||||
log_id: string;
|
||||
};
|
||||
}
|
|
@ -6,23 +6,22 @@ export function bearer(value: string) {
|
|||
return `Bearer ${value.trim()}`;
|
||||
}
|
||||
|
||||
export function getAuthHeaders(apiKey = "") {
|
||||
export function getAuthKey(apiKey = "") {
|
||||
const accessStore = useAccessStore.getState();
|
||||
const isApp = !!getClientConfig()?.isApp;
|
||||
|
||||
let headers: Record<string, string> = {};
|
||||
let authKey = "";
|
||||
|
||||
if (apiKey) {
|
||||
// use user's api key first
|
||||
headers.Authorization = bearer(apiKey);
|
||||
authKey = bearer(apiKey);
|
||||
} else if (
|
||||
accessStore.enabledAccessControl() &&
|
||||
!isApp &&
|
||||
!!accessStore.accessCode
|
||||
) {
|
||||
// or use access code
|
||||
headers.Authorization = bearer(ACCESS_CODE_PREFIX + accessStore.accessCode);
|
||||
authKey = bearer(ACCESS_CODE_PREFIX + accessStore.accessCode);
|
||||
}
|
||||
|
||||
return headers;
|
||||
return authKey;
|
||||
}
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
export const COMMON_PROVIDER_CONFIG = {
|
||||
customModels: "",
|
||||
models: [] as string[],
|
||||
autoFetchModels: false, // fetch available models from server or not
|
||||
};
|
|
@ -2,9 +2,11 @@ import { MaskConfig, ProviderConfig } from "../store";
|
|||
import { shareToShareGPT } from "./common/share";
|
||||
import { createOpenAiClient } from "./openai";
|
||||
import { ChatControllerPool } from "./common/controller";
|
||||
import { createAnthropicClient } from "./anthropic";
|
||||
|
||||
export const LLMClients = {
|
||||
openai: createOpenAiClient,
|
||||
anthropic: createAnthropicClient,
|
||||
};
|
||||
|
||||
export function createLLMClient(
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import { COMMON_PROVIDER_CONFIG } from "../common/config";
|
||||
|
||||
export const OpenAIConfig = {
|
||||
model: {
|
||||
model: "gpt-3.5-turbo" as string,
|
||||
|
@ -12,9 +10,57 @@ export const OpenAIConfig = {
|
|||
frequency_penalty: 0,
|
||||
},
|
||||
provider: {
|
||||
name: "OpenAI",
|
||||
name: "OpenAI" as const,
|
||||
endpoint: "https://api.openai.com",
|
||||
apiKey: "",
|
||||
...COMMON_PROVIDER_CONFIG,
|
||||
customModels: "",
|
||||
autoFetchModels: false, // fetch available models from server or not
|
||||
|
||||
models: [
|
||||
{
|
||||
name: "gpt-4",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-0314",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-0613",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-32k",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-32k-0314",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-32k-0613",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-0301",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-0613",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-16k",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-16k-0613",
|
||||
available: true,
|
||||
},
|
||||
],
|
||||
},
|
||||
};
|
||||
|
|
|
@ -3,12 +3,7 @@ import {
|
|||
fetchEventSource,
|
||||
} from "@fortaine/fetch-event-source";
|
||||
|
||||
import {
|
||||
API_PREFIX,
|
||||
ApiPath,
|
||||
DEFAULT_MODELS,
|
||||
OpenaiPath,
|
||||
} from "@/app/constant";
|
||||
import { API_PREFIX, ApiPath, OpenaiPath } from "@/app/constant";
|
||||
import { ModelConfig, ProviderConfig } from "@/app/store";
|
||||
|
||||
import { OpenAI } from "./types";
|
||||
|
@ -21,7 +16,8 @@ import { getApiPath } from "@/app/utils/path";
|
|||
import { trimEnd } from "@/app/utils/string";
|
||||
import { omit } from "@/app/utils/object";
|
||||
import { createLogger } from "@/app/utils/log";
|
||||
import { getAuthHeaders } from "../common/auth";
|
||||
import { getAuthKey } from "../common/auth";
|
||||
import { OpenAIConfig } from "./config";
|
||||
|
||||
export function createOpenAiClient(
|
||||
providerConfigs: ProviderConfig,
|
||||
|
@ -35,12 +31,12 @@ export function createOpenAiClient(
|
|||
headers() {
|
||||
return {
|
||||
"Content-Type": "application/json",
|
||||
...getAuthHeaders(openaiConfig.apiKey),
|
||||
Authorization: getAuthKey(),
|
||||
};
|
||||
},
|
||||
|
||||
path(path: OpenaiPath): string {
|
||||
let baseUrl = openaiConfig.endpoint;
|
||||
let baseUrl: string = openaiConfig.endpoint;
|
||||
|
||||
// if endpoint is empty, use default endpoint
|
||||
if (baseUrl.trim().length === 0) {
|
||||
|
@ -206,59 +202,9 @@ export function createOpenAiClient(
|
|||
},
|
||||
|
||||
async usage() {
|
||||
const formatDate = (d: Date) =>
|
||||
`${d.getFullYear()}-${(d.getMonth() + 1)
|
||||
.toString()
|
||||
.padStart(2, "0")}-${d.getDate().toString().padStart(2, "0")}`;
|
||||
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
|
||||
const now = new Date();
|
||||
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
|
||||
const startDate = formatDate(startOfMonth);
|
||||
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
|
||||
|
||||
const [used, subs] = await Promise.all([
|
||||
fetch(
|
||||
`${this.path(
|
||||
OpenaiPath.Usage,
|
||||
)}?start_date=${startDate}&end_date=${endDate}`,
|
||||
{
|
||||
method: "GET",
|
||||
headers: this.headers(),
|
||||
},
|
||||
),
|
||||
fetch(this.path(OpenaiPath.Subs), {
|
||||
method: "GET",
|
||||
headers: this.headers(),
|
||||
}),
|
||||
]);
|
||||
|
||||
if (!used.ok || !subs.ok) {
|
||||
throw new Error("Failed to query usage from openai");
|
||||
}
|
||||
|
||||
const response = (await used.json()) as {
|
||||
total_usage?: number;
|
||||
error?: {
|
||||
type: string;
|
||||
message: string;
|
||||
};
|
||||
};
|
||||
|
||||
const total = (await subs.json()) as {
|
||||
hard_limit_usd?: number;
|
||||
};
|
||||
|
||||
if (response.error?.type) {
|
||||
throw Error(response.error?.message);
|
||||
}
|
||||
|
||||
response.total_usage = Math.round(response.total_usage ?? 0) / 100;
|
||||
total.hard_limit_usd =
|
||||
Math.round((total.hard_limit_usd ?? 0) * 100) / 100;
|
||||
|
||||
return {
|
||||
used: response.total_usage,
|
||||
total: total.hard_limit_usd,
|
||||
used: 0,
|
||||
total: 0,
|
||||
} as LLMUsage;
|
||||
},
|
||||
|
||||
|
@ -266,13 +212,14 @@ export function createOpenAiClient(
|
|||
const customModels = openaiConfig.customModels
|
||||
.split(",")
|
||||
.map((v) => v.trim())
|
||||
.filter((v) => !!v)
|
||||
.map((v) => ({
|
||||
name: v,
|
||||
available: true,
|
||||
}));
|
||||
|
||||
if (!openaiConfig.autoFetchModels) {
|
||||
return [...DEFAULT_MODELS.slice(), ...customModels];
|
||||
return [...OpenAIConfig.provider.models.slice(), ...customModels];
|
||||
}
|
||||
|
||||
const res = await fetch(this.path(OpenaiPath.ListModel), {
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
import { DEFAULT_MODELS } from "../constant";
|
||||
|
||||
export interface LLMUsage {
|
||||
used: number;
|
||||
total: number;
|
||||
|
@ -14,8 +12,6 @@ export interface LLMModel {
|
|||
export const ROLES = ["system", "user", "assistant"] as const;
|
||||
export type MessageRole = (typeof ROLES)[number];
|
||||
|
||||
export type ChatModel = (typeof DEFAULT_MODELS)[number]["name"];
|
||||
|
||||
export interface RequestMessage {
|
||||
role: MessageRole;
|
||||
content: string;
|
||||
|
|
|
@ -0,0 +1,79 @@
|
|||
import { ModelConfig } from "@/app/store";
|
||||
import { ModelConfigProps } from "../types";
|
||||
import { ListItem, Select } from "../../ui-lib";
|
||||
import Locale from "@/app/locales";
|
||||
import { InputRange } from "../../input-range";
|
||||
|
||||
export function AnthropicModelConfig(
|
||||
props: ModelConfigProps<ModelConfig["anthropic"]>,
|
||||
) {
|
||||
return (
|
||||
<>
|
||||
<ListItem title={Locale.Settings.Model}>
|
||||
<Select
|
||||
value={props.config.model}
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) => (config.model = e.currentTarget.value),
|
||||
);
|
||||
}}
|
||||
>
|
||||
{props.models.map((v, i) => (
|
||||
<option value={v.name} key={i} disabled={!v.available}>
|
||||
{v.name}
|
||||
</option>
|
||||
))}
|
||||
</Select>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.Temperature.Title}
|
||||
subTitle={Locale.Settings.Temperature.SubTitle}
|
||||
>
|
||||
<InputRange
|
||||
value={props.config.temperature?.toFixed(1)}
|
||||
min="0"
|
||||
max="1" // lets limit it to 0-1
|
||||
step="0.1"
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) => (config.temperature = e.currentTarget.valueAsNumber),
|
||||
);
|
||||
}}
|
||||
></InputRange>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.TopP.Title}
|
||||
subTitle={Locale.Settings.TopP.SubTitle}
|
||||
>
|
||||
<InputRange
|
||||
value={(props.config.top_p ?? 1).toFixed(1)}
|
||||
min="0"
|
||||
max="1"
|
||||
step="0.1"
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) => (config.top_p = e.currentTarget.valueAsNumber),
|
||||
);
|
||||
}}
|
||||
></InputRange>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.MaxTokens.Title}
|
||||
subTitle={Locale.Settings.MaxTokens.SubTitle}
|
||||
>
|
||||
<input
|
||||
type="number"
|
||||
min={100}
|
||||
max={100000}
|
||||
value={props.config.max_tokens_to_sample}
|
||||
onChange={(e) =>
|
||||
props.updateConfig(
|
||||
(config) =>
|
||||
(config.max_tokens_to_sample = e.currentTarget.valueAsNumber),
|
||||
)
|
||||
}
|
||||
></input>
|
||||
</ListItem>
|
||||
</>
|
||||
);
|
||||
}
|
|
@ -0,0 +1,70 @@
|
|||
import { ProviderConfig } from "@/app/store";
|
||||
import { ProviderConfigProps } from "../types";
|
||||
import { ListItem, PasswordInput } from "../../ui-lib";
|
||||
import Locale from "@/app/locales";
|
||||
import { REMOTE_API_HOST } from "@/app/constant";
|
||||
|
||||
export function AnthropicProviderConfig(
|
||||
props: ProviderConfigProps<ProviderConfig["anthropic"]>,
|
||||
) {
|
||||
return (
|
||||
<>
|
||||
<ListItem
|
||||
title={Locale.Settings.Endpoint.Title}
|
||||
subTitle={Locale.Settings.Endpoint.SubTitle}
|
||||
>
|
||||
<input
|
||||
type="text"
|
||||
value={props.config.endpoint}
|
||||
placeholder={REMOTE_API_HOST}
|
||||
onChange={(e) =>
|
||||
props.updateConfig(
|
||||
(config) => (config.endpoint = e.currentTarget.value),
|
||||
)
|
||||
}
|
||||
></input>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.Token.Title}
|
||||
subTitle={Locale.Settings.Token.SubTitle}
|
||||
>
|
||||
<PasswordInput
|
||||
value={props.config.apiKey}
|
||||
type="text"
|
||||
placeholder={Locale.Settings.Token.Placeholder}
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) => (config.apiKey = e.currentTarget.value),
|
||||
);
|
||||
}}
|
||||
/>
|
||||
</ListItem>
|
||||
<ListItem title={"Anthropic Version"} subTitle={"填写 API 版本号"}>
|
||||
<PasswordInput
|
||||
value={props.config.version}
|
||||
type="text"
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) => (config.version = e.currentTarget.value),
|
||||
);
|
||||
}}
|
||||
/>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.CustomModel.Title}
|
||||
subTitle={Locale.Settings.CustomModel.SubTitle}
|
||||
>
|
||||
<input
|
||||
type="text"
|
||||
value={props.config.customModels}
|
||||
placeholder="model1,model2,model3"
|
||||
onChange={(e) =>
|
||||
props.updateConfig(
|
||||
(config) => (config.customModels = e.currentTarget.value),
|
||||
)
|
||||
}
|
||||
></input>
|
||||
</ListItem>
|
||||
</>
|
||||
);
|
||||
}
|
|
@ -11,6 +11,10 @@ import { OpenAIProviderConfig } from "./openai/provider";
|
|||
import { ListItem, Select } from "../ui-lib";
|
||||
import Locale from "@/app/locales";
|
||||
import { InputRange } from "../input-range";
|
||||
import { OpenAIConfig } from "@/app/client/openai/config";
|
||||
import { AnthropicModelConfig } from "./anthropic/model";
|
||||
import { AnthropicConfig } from "@/app/client/anthropic/config";
|
||||
import { AnthropicProviderConfig } from "./anthropic/provider";
|
||||
|
||||
export function ModelConfigList(props: {
|
||||
provider: LLMProvider;
|
||||
|
@ -24,16 +28,17 @@ export function ModelConfigList(props: {
|
|||
updateConfig={(update) => {
|
||||
props.updateConfig((config) => update(config.openai));
|
||||
}}
|
||||
models={[
|
||||
{
|
||||
name: "gpt-3.5-turbo",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4",
|
||||
available: true,
|
||||
},
|
||||
]}
|
||||
models={OpenAIConfig.provider.models}
|
||||
/>
|
||||
);
|
||||
} else if (props.provider === "anthropic") {
|
||||
return (
|
||||
<AnthropicModelConfig
|
||||
config={props.config.anthropic}
|
||||
updateConfig={(update) => {
|
||||
props.updateConfig((config) => update(config.anthropic));
|
||||
}}
|
||||
models={AnthropicConfig.provider.models}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -55,6 +60,15 @@ export function ProviderConfigList(props: {
|
|||
}}
|
||||
/>
|
||||
);
|
||||
} else if (props.provider === "anthropic") {
|
||||
return (
|
||||
<AnthropicProviderConfig
|
||||
config={props.config.anthropic}
|
||||
updateConfig={(update) => {
|
||||
props.updateConfig((config) => update(config.anthropic));
|
||||
}}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
return null;
|
||||
|
|
|
@ -3,6 +3,8 @@ import { ProviderConfigProps } from "../types";
|
|||
import { ListItem, PasswordInput } from "../../ui-lib";
|
||||
import Locale from "@/app/locales";
|
||||
import { REMOTE_API_HOST } from "@/app/constant";
|
||||
import { IconButton } from "../../button";
|
||||
import ReloadIcon from "@/app/icons/reload.svg";
|
||||
|
||||
export function OpenAIProviderConfig(
|
||||
props: ProviderConfigProps<ProviderConfig["openai"]>,
|
||||
|
@ -58,6 +60,7 @@ export function OpenAIProviderConfig(
|
|||
<ListItem title="自动拉取可用模型" subTitle="尝试拉取所有可用模型">
|
||||
<input
|
||||
type="checkbox"
|
||||
style={{ marginLeft: 10 }}
|
||||
checked={props.config.autoFetchModels}
|
||||
onChange={(e) =>
|
||||
props.updateConfig(
|
||||
|
|
|
@ -1,139 +0,0 @@
|
|||
import { ModalConfigValidator, ModelConfig, useAppConfig } from "../store";
|
||||
|
||||
import Locale from "../locales";
|
||||
import { InputRange } from "./input-range";
|
||||
import { ListItem, Select } from "./ui-lib";
|
||||
|
||||
export function _ModelConfigList(props: {
|
||||
modelConfig: ModelConfig;
|
||||
updateConfig: (updater: (config: ModelConfig) => void) => void;
|
||||
}) {
|
||||
return null;
|
||||
/*
|
||||
const config = useAppConfig();
|
||||
|
||||
return (
|
||||
<>
|
||||
<ListItem title={Locale.Settings.Model}>
|
||||
<Select
|
||||
value={props.modelConfig.model}
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) =>
|
||||
(config.model = ModalConfigValidator.model(
|
||||
e.currentTarget.value,
|
||||
)),
|
||||
);
|
||||
}}
|
||||
>
|
||||
{config.allModels().map((v, i) => (
|
||||
<option value={v.name} key={i} disabled={!v.available}>
|
||||
{v.name}
|
||||
</option>
|
||||
))}
|
||||
</Select>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.Temperature.Title}
|
||||
subTitle={Locale.Settings.Temperature.SubTitle}
|
||||
>
|
||||
<InputRange
|
||||
value={props.modelConfig.temperature?.toFixed(1)}
|
||||
min="0"
|
||||
max="1" // lets limit it to 0-1
|
||||
step="0.1"
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) =>
|
||||
(config.temperature = ModalConfigValidator.temperature(
|
||||
e.currentTarget.valueAsNumber,
|
||||
)),
|
||||
);
|
||||
}}
|
||||
></InputRange>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.TopP.Title}
|
||||
subTitle={Locale.Settings.TopP.SubTitle}
|
||||
>
|
||||
<InputRange
|
||||
value={(props.modelConfig.top_p ?? 1).toFixed(1)}
|
||||
min="0"
|
||||
max="1"
|
||||
step="0.1"
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) =>
|
||||
(config.top_p = ModalConfigValidator.top_p(
|
||||
e.currentTarget.valueAsNumber,
|
||||
)),
|
||||
);
|
||||
}}
|
||||
></InputRange>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.MaxTokens.Title}
|
||||
subTitle={Locale.Settings.MaxTokens.SubTitle}
|
||||
>
|
||||
<input
|
||||
type="number"
|
||||
min={100}
|
||||
max={100000}
|
||||
value={props.modelConfig.max_tokens}
|
||||
onChange={(e) =>
|
||||
props.updateConfig(
|
||||
(config) =>
|
||||
(config.max_tokens = ModalConfigValidator.max_tokens(
|
||||
e.currentTarget.valueAsNumber,
|
||||
)),
|
||||
)
|
||||
}
|
||||
></input>
|
||||
</ListItem>
|
||||
<ListItem
|
||||
title={Locale.Settings.PresencePenalty.Title}
|
||||
subTitle={Locale.Settings.PresencePenalty.SubTitle}
|
||||
>
|
||||
<InputRange
|
||||
value={props.modelConfig.presence_penalty?.toFixed(1)}
|
||||
min="-2"
|
||||
max="2"
|
||||
step="0.1"
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) =>
|
||||
(config.presence_penalty =
|
||||
ModalConfigValidator.presence_penalty(
|
||||
e.currentTarget.valueAsNumber,
|
||||
)),
|
||||
);
|
||||
}}
|
||||
></InputRange>
|
||||
</ListItem>
|
||||
|
||||
<ListItem
|
||||
title={Locale.Settings.FrequencyPenalty.Title}
|
||||
subTitle={Locale.Settings.FrequencyPenalty.SubTitle}
|
||||
>
|
||||
<InputRange
|
||||
value={props.modelConfig.frequency_penalty?.toFixed(1)}
|
||||
min="-2"
|
||||
max="2"
|
||||
step="0.1"
|
||||
onChange={(e) => {
|
||||
props.updateConfig(
|
||||
(config) =>
|
||||
(config.frequency_penalty =
|
||||
ModalConfigValidator.frequency_penalty(
|
||||
e.currentTarget.valueAsNumber,
|
||||
)),
|
||||
);
|
||||
}}
|
||||
></InputRange>
|
||||
</ListItem>
|
||||
|
||||
|
||||
</>
|
||||
);
|
||||
*/
|
||||
}
|
|
@ -37,8 +37,6 @@ import {
|
|||
useUpdateStore,
|
||||
useAccessStore,
|
||||
useAppConfig,
|
||||
LLMProvider,
|
||||
LLMProviders,
|
||||
} from "../store";
|
||||
|
||||
import Locale, {
|
||||
|
@ -578,22 +576,6 @@ export function Settings() {
|
|||
console.log("[Update] remote version ", updateStore.remoteVersion);
|
||||
}
|
||||
|
||||
const usage = {
|
||||
used: updateStore.used,
|
||||
subscription: updateStore.subscription,
|
||||
};
|
||||
const [loadingUsage, setLoadingUsage] = useState(false);
|
||||
function checkUsage(force = false) {
|
||||
if (accessStore.hideBalanceQuery) {
|
||||
return;
|
||||
}
|
||||
|
||||
setLoadingUsage(true);
|
||||
updateStore.updateUsage(force).finally(() => {
|
||||
setLoadingUsage(false);
|
||||
});
|
||||
}
|
||||
|
||||
const accessStore = useAccessStore();
|
||||
const enabledAccessControl = useMemo(
|
||||
() => accessStore.enabledAccessControl(),
|
||||
|
@ -610,7 +592,6 @@ export function Settings() {
|
|||
useEffect(() => {
|
||||
// checks per minutes
|
||||
checkUpdate();
|
||||
showUsage && checkUsage();
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, []);
|
||||
|
||||
|
@ -806,6 +787,28 @@ export function Settings() {
|
|||
</ListItem>
|
||||
</List>
|
||||
|
||||
<List>
|
||||
{showAccessCode ? (
|
||||
<ListItem
|
||||
title={Locale.Settings.AccessCode.Title}
|
||||
subTitle={Locale.Settings.AccessCode.SubTitle}
|
||||
>
|
||||
<PasswordInput
|
||||
value={accessStore.accessCode}
|
||||
type="text"
|
||||
placeholder={Locale.Settings.AccessCode.Placeholder}
|
||||
onChange={(e) => {
|
||||
accessStore.update(
|
||||
(config) => (config.accessCode = e.currentTarget.value),
|
||||
);
|
||||
}}
|
||||
/>
|
||||
</ListItem>
|
||||
) : (
|
||||
<></>
|
||||
)}
|
||||
</List>
|
||||
|
||||
<SyncItems />
|
||||
|
||||
<List>
|
||||
|
@ -875,56 +878,6 @@ export function Settings() {
|
|||
</ListItem>
|
||||
</List>
|
||||
|
||||
<List>
|
||||
{showAccessCode ? (
|
||||
<ListItem
|
||||
title={Locale.Settings.AccessCode.Title}
|
||||
subTitle={Locale.Settings.AccessCode.SubTitle}
|
||||
>
|
||||
<PasswordInput
|
||||
value={accessStore.accessCode}
|
||||
type="text"
|
||||
placeholder={Locale.Settings.AccessCode.Placeholder}
|
||||
onChange={(e) => {
|
||||
accessStore.update(
|
||||
(config) => (config.accessCode = e.currentTarget.value),
|
||||
);
|
||||
}}
|
||||
/>
|
||||
</ListItem>
|
||||
) : (
|
||||
<></>
|
||||
)}
|
||||
|
||||
{!accessStore.hideUserApiKey ? <></> : null}
|
||||
|
||||
{!accessStore.hideBalanceQuery ? (
|
||||
<ListItem
|
||||
title={Locale.Settings.Usage.Title}
|
||||
subTitle={
|
||||
showUsage
|
||||
? loadingUsage
|
||||
? Locale.Settings.Usage.IsChecking
|
||||
: Locale.Settings.Usage.SubTitle(
|
||||
usage?.used ?? "[?]",
|
||||
usage?.subscription ?? "[?]",
|
||||
)
|
||||
: Locale.Settings.Usage.NoAccess
|
||||
}
|
||||
>
|
||||
{!showUsage || loadingUsage ? (
|
||||
<div />
|
||||
) : (
|
||||
<IconButton
|
||||
icon={<ResetIcon></ResetIcon>}
|
||||
text={Locale.Settings.Usage.Check}
|
||||
onClick={() => checkUsage(true)}
|
||||
/>
|
||||
)}
|
||||
</ListItem>
|
||||
) : null}
|
||||
</List>
|
||||
|
||||
<List>
|
||||
<ProviderSelectItem
|
||||
value={config.globalMaskConfig.provider}
|
||||
|
|
|
@ -24,6 +24,7 @@ export const API_PREFIX = "/api";
|
|||
|
||||
export enum ApiPath {
|
||||
OpenAI = "/api/openai",
|
||||
Anthropic = "/api/anthropic",
|
||||
Cors = "/api/cors",
|
||||
Config = "/api/config",
|
||||
}
|
||||
|
@ -70,6 +71,10 @@ export enum OpenaiPath {
|
|||
ListModel = "v1/models",
|
||||
}
|
||||
|
||||
export enum AnthropicPath {
|
||||
Chat = "v1/complete",
|
||||
}
|
||||
|
||||
export const DEFAULT_INPUT_TEMPLATE = `{{input}}`; // input / time / model / lang
|
||||
export const DEFAULT_SYSTEM_TEMPLATE = `
|
||||
You are ChatGPT, a large language model trained by OpenAI.
|
||||
|
@ -77,54 +82,5 @@ Knowledge cutoff: 2021-09
|
|||
Current model: {{model}}
|
||||
Current time: {{time}}`;
|
||||
|
||||
export const SUMMARIZE_MODEL = "gpt-3.5-turbo";
|
||||
|
||||
export const DEFAULT_MODELS = [
|
||||
{
|
||||
name: "gpt-4",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-0314",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-0613",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-32k",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-32k-0314",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-4-32k-0613",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-0301",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-0613",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-16k",
|
||||
available: true,
|
||||
},
|
||||
{
|
||||
name: "gpt-3.5-turbo-16k-0613",
|
||||
available: true,
|
||||
},
|
||||
] as const;
|
||||
|
||||
export const CHAT_PAGE_SIZE = 15;
|
||||
export const MAX_RENDER_MSG_COUNT = 45;
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import { REMOTE_API_HOST, DEFAULT_MODELS, StoreKey } from "../constant";
|
||||
import { REMOTE_API_HOST, StoreKey } from "../constant";
|
||||
import { getClientConfig } from "../config/client";
|
||||
import { createPersistStore } from "../utils/store";
|
||||
import { getAuthHeaders } from "../client/common/auth";
|
||||
import { getAuthKey } from "../client/common/auth";
|
||||
|
||||
let fetchState = 0; // 0 not fetch, 1 fetching, 2 done
|
||||
|
||||
|
@ -39,7 +39,7 @@ export const useAccessStore = createPersistStore(
|
|||
method: "post",
|
||||
body: null,
|
||||
headers: {
|
||||
...getAuthHeaders(),
|
||||
Authorization: getAuthKey(),
|
||||
},
|
||||
})
|
||||
.then((res) => res.json())
|
||||
|
@ -48,9 +48,7 @@ export const useAccessStore = createPersistStore(
|
|||
set(() => ({ ...res }));
|
||||
|
||||
if (res.disableGPT4) {
|
||||
DEFAULT_MODELS.forEach(
|
||||
(m: any) => (m.available = !m.name.startsWith("gpt-4")),
|
||||
);
|
||||
// disable model
|
||||
}
|
||||
})
|
||||
.catch(() => {
|
||||
|
|
|
@ -2,20 +2,9 @@ import { trimTopic } from "../utils";
|
|||
|
||||
import Locale, { getLang } from "../locales";
|
||||
import { showToast } from "../components/ui-lib";
|
||||
import {
|
||||
LLMProvider,
|
||||
MaskConfig,
|
||||
ModelConfig,
|
||||
ModelType,
|
||||
useAppConfig,
|
||||
} from "./config";
|
||||
import { MaskConfig, useAppConfig } from "./config";
|
||||
import { createEmptyMask, Mask } from "./mask";
|
||||
import {
|
||||
DEFAULT_INPUT_TEMPLATE,
|
||||
DEFAULT_SYSTEM_TEMPLATE,
|
||||
StoreKey,
|
||||
SUMMARIZE_MODEL,
|
||||
} from "../constant";
|
||||
import { DEFAULT_INPUT_TEMPLATE, StoreKey } from "../constant";
|
||||
import { ChatControllerPool } from "../client/common/controller";
|
||||
import { prettyObject } from "../utils/format";
|
||||
import { estimateTokenLength } from "../utils/token";
|
||||
|
@ -85,11 +74,6 @@ function createEmptySession(): ChatSession {
|
|||
};
|
||||
}
|
||||
|
||||
function getSummarizeModel(currentModel: string) {
|
||||
// if it is using gpt-* models, force to use 3.5 to summarize
|
||||
return currentModel.startsWith("gpt") ? SUMMARIZE_MODEL : currentModel;
|
||||
}
|
||||
|
||||
function countMessages(msgs: ChatMessage[]) {
|
||||
return msgs.reduce((pre, cur) => pre + estimateTokenLength(cur.content), 0);
|
||||
}
|
||||
|
@ -291,6 +275,18 @@ export const useChatStore = createPersistStore(
|
|||
return this.extractModelConfig(maskConfig);
|
||||
},
|
||||
|
||||
getMaxTokens() {
|
||||
const maskConfig = this.getCurrentMaskConfig();
|
||||
|
||||
if (maskConfig.provider === "openai") {
|
||||
return maskConfig.modelConfig.openai.max_tokens;
|
||||
} else if (maskConfig.provider === "anthropic") {
|
||||
return maskConfig.modelConfig.anthropic.max_tokens_to_sample;
|
||||
}
|
||||
|
||||
return 8192;
|
||||
},
|
||||
|
||||
getClient() {
|
||||
const appConfig = useAppConfig.getState();
|
||||
const currentMaskConfig = get().getCurrentMaskConfig();
|
||||
|
@ -463,7 +459,7 @@ export const useChatStore = createPersistStore(
|
|||
: shortTermMemoryStartIndex;
|
||||
// and if user has cleared history messages, we should exclude the memory too.
|
||||
const contextStartIndex = Math.max(clearContextIndex, memoryStartIndex);
|
||||
const maxTokenThreshold = modelConfig.max_tokens;
|
||||
const maxTokenThreshold = this.getMaxTokens();
|
||||
|
||||
// get recent messages as much as possible
|
||||
const reversedRecentMessages = [];
|
||||
|
@ -546,7 +542,6 @@ export const useChatStore = createPersistStore(
|
|||
});
|
||||
}
|
||||
|
||||
const modelConfig = this.getCurrentModelConfig();
|
||||
const summarizeIndex = Math.max(
|
||||
session.lastSummarizeIndex,
|
||||
session.clearContextIndex ?? 0,
|
||||
|
@ -557,7 +552,7 @@ export const useChatStore = createPersistStore(
|
|||
|
||||
const historyMsgLength = countMessages(toBeSummarizedMsgs);
|
||||
|
||||
if (historyMsgLength > modelConfig?.max_tokens ?? 4000) {
|
||||
if (historyMsgLength > this.getMaxTokens()) {
|
||||
const n = toBeSummarizedMsgs.length;
|
||||
toBeSummarizedMsgs = toBeSummarizedMsgs.slice(
|
||||
Math.max(0, n - chatConfig.historyMessageCount),
|
||||
|
|
|
@ -2,7 +2,6 @@ import { isMacOS } from "../utils";
|
|||
import { getClientConfig } from "../config/client";
|
||||
import {
|
||||
DEFAULT_INPUT_TEMPLATE,
|
||||
DEFAULT_MODELS,
|
||||
DEFAULT_SIDEBAR_WIDTH,
|
||||
StoreKey,
|
||||
} from "../constant";
|
||||
|
@ -10,8 +9,7 @@ import { createPersistStore } from "../utils/store";
|
|||
import { OpenAIConfig } from "../client/openai/config";
|
||||
import { api } from "../client";
|
||||
import { SubmitKey, Theme } from "../typing";
|
||||
|
||||
export type ModelType = (typeof DEFAULT_MODELS)[number]["name"];
|
||||
import { AnthropicConfig } from "../client/anthropic/config";
|
||||
|
||||
export const DEFAULT_CHAT_CONFIG = {
|
||||
enableAutoGenerateTitle: true,
|
||||
|
@ -25,17 +23,13 @@ export type ChatConfig = typeof DEFAULT_CHAT_CONFIG;
|
|||
|
||||
export const DEFAULT_PROVIDER_CONFIG = {
|
||||
openai: OpenAIConfig.provider,
|
||||
anthropic: AnthropicConfig.provider,
|
||||
// azure: {
|
||||
// endpoint: "https://api.openai.com",
|
||||
// apiKey: "",
|
||||
// version: "",
|
||||
// ...COMMON_PROVIDER_CONFIG,
|
||||
// },
|
||||
// claude: {
|
||||
// endpoint: "https://api.anthropic.com",
|
||||
// apiKey: "",
|
||||
// ...COMMON_PROVIDER_CONFIG,
|
||||
// },
|
||||
// google: {
|
||||
// endpoint: "https://api.anthropic.com",
|
||||
// apiKey: "",
|
||||
|
@ -45,6 +39,7 @@ export const DEFAULT_PROVIDER_CONFIG = {
|
|||
|
||||
export const DEFAULT_MODEL_CONFIG = {
|
||||
openai: OpenAIConfig.model,
|
||||
anthropic: AnthropicConfig.model,
|
||||
// azure: {
|
||||
// model: "gpt-3.5-turbo" as string,
|
||||
// summarizeModel: "gpt-3.5-turbo",
|
||||
|
@ -55,15 +50,6 @@ export const DEFAULT_MODEL_CONFIG = {
|
|||
// presence_penalty: 0,
|
||||
// frequency_penalty: 0,
|
||||
// },
|
||||
// claude: {
|
||||
// model: "claude-2",
|
||||
// summarizeModel: "claude-2",
|
||||
//
|
||||
// max_tokens_to_sample: 100000,
|
||||
// temperature: 1,
|
||||
// top_p: 0.7,
|
||||
// top_k: 1,
|
||||
// },
|
||||
// google: {
|
||||
// model: "chat-bison-001",
|
||||
// summarizeModel: "claude-2",
|
||||
|
@ -125,7 +111,7 @@ export function limitNumber(
|
|||
|
||||
export const ModalConfigValidator = {
|
||||
model(x: string) {
|
||||
return x as ModelType;
|
||||
return x as string;
|
||||
},
|
||||
max_tokens(x: number) {
|
||||
return limitNumber(x, 0, 100000, 2000);
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
},
|
||||
"package": {
|
||||
"productName": "ChatGPT Next Web",
|
||||
"version": "2.9.9"
|
||||
"version": "3.0.0"
|
||||
},
|
||||
"tauri": {
|
||||
"allowlist": {
|
||||
|
|
Loading…
Reference in New Issue