feat: add multi-model support

This commit is contained in:
Yidadaa
2023-09-26 00:19:21 +08:00
parent b90dfb48ee
commit 5610f423d0
62 changed files with 1439 additions and 940 deletions

View File

@@ -1,151 +0,0 @@
import { getClientConfig } from "../config/client";
import { ACCESS_CODE_PREFIX } from "../constant";
import { ChatMessage, ModelType, useAccessStore } from "../store";
import { ChatGPTApi } from "./platforms/openai";
export const ROLES = ["system", "user", "assistant"] as const;
export type MessageRole = (typeof ROLES)[number];
export const Models = ["gpt-3.5-turbo", "gpt-4"] as const;
export type ChatModel = ModelType;
export interface RequestMessage {
role: MessageRole;
content: string;
}
export interface LLMConfig {
model: string;
temperature?: number;
top_p?: number;
stream?: boolean;
presence_penalty?: number;
frequency_penalty?: number;
}
export interface ChatOptions {
messages: RequestMessage[];
config: LLMConfig;
onUpdate?: (message: string, chunk: string) => void;
onFinish: (message: string) => void;
onError?: (err: Error) => void;
onController?: (controller: AbortController) => void;
}
export interface LLMUsage {
used: number;
total: number;
}
export interface LLMModel {
name: string;
available: boolean;
}
export abstract class LLMApi {
abstract chat(options: ChatOptions): Promise<void>;
abstract usage(): Promise<LLMUsage>;
abstract models(): Promise<LLMModel[]>;
}
type ProviderName = "openai" | "azure" | "claude" | "palm";
interface Model {
name: string;
provider: ProviderName;
ctxlen: number;
}
interface ChatProvider {
name: ProviderName;
apiConfig: {
baseUrl: string;
apiKey: string;
summaryModel: Model;
};
models: Model[];
chat: () => void;
usage: () => void;
}
export class ClientApi {
public llm: LLMApi;
constructor() {
this.llm = new ChatGPTApi();
}
config() {}
prompts() {}
masks() {}
async share(messages: ChatMessage[], avatarUrl: string | null = null) {
const msgs = messages
.map((m) => ({
from: m.role === "user" ? "human" : "gpt",
value: m.content,
}))
.concat([
{
from: "human",
value:
"Share from [ChatGPT Next Web]: https://github.com/Yidadaa/ChatGPT-Next-Web",
},
]);
// 敬告二开开发者们,为了开源大模型的发展,请不要修改上述消息,此消息用于后续数据清洗使用
// Please do not modify this message
console.log("[Share]", messages, msgs);
const clientConfig = getClientConfig();
const proxyUrl = "/sharegpt";
const rawUrl = "https://sharegpt.com/api/conversations";
const shareUrl = clientConfig?.isApp ? rawUrl : proxyUrl;
const res = await fetch(shareUrl, {
body: JSON.stringify({
avatarUrl,
items: msgs,
}),
headers: {
"Content-Type": "application/json",
},
method: "POST",
});
const resJson = await res.json();
console.log("[Share]", resJson);
if (resJson.id) {
return `https://shareg.pt/${resJson.id}`;
}
}
}
export const api = new ClientApi();
export function getHeaders() {
const accessStore = useAccessStore.getState();
let headers: Record<string, string> = {
"Content-Type": "application/json",
"x-requested-with": "XMLHttpRequest",
};
const makeBearer = (token: string) => `Bearer ${token.trim()}`;
const validString = (x: string) => x && x.length > 0;
// use user's api key first
if (validString(accessStore.token)) {
headers.Authorization = makeBearer(accessStore.token);
} else if (
accessStore.enabledAccessControl() &&
validString(accessStore.accessCode)
) {
headers.Authorization = makeBearer(
ACCESS_CODE_PREFIX + accessStore.accessCode,
);
}
return headers;
}

28
app/client/common/auth.ts Normal file
View File

@@ -0,0 +1,28 @@
import { getClientConfig } from "@/app/config/client";
import { ACCESS_CODE_PREFIX } from "@/app/constant";
import { useAccessStore } from "@/app/store";
export function bearer(value: string) {
return `Bearer ${value.trim()}`;
}
export function getAuthHeaders(apiKey = "") {
const accessStore = useAccessStore.getState();
const isApp = !!getClientConfig()?.isApp;
let headers: Record<string, string> = {};
if (apiKey) {
// use user's api key first
headers.Authorization = bearer(apiKey);
} else if (
accessStore.enabledAccessControl() &&
!isApp &&
!!accessStore.accessCode
) {
// or use access code
headers.Authorization = bearer(ACCESS_CODE_PREFIX + accessStore.accessCode);
}
return headers;
}

View File

@@ -0,0 +1,5 @@
export const COMMON_PROVIDER_CONFIG = {
customModels: "",
models: [] as string[],
autoFetchModels: false, // fetch available models from server or not
};

View File

@@ -0,0 +1,44 @@
import { getClientConfig } from "@/app/config/client";
import { ChatMessage } from "@/app/store";
export async function shareToShareGPT(
messages: ChatMessage[],
avatarUrl: string | null = null,
) {
const msgs = messages
.map((m) => ({
from: m.role === "user" ? "human" : "gpt",
value: m.content,
}))
.concat([
{
from: "human",
// 敬告二开开发者们,为了开源大模型的发展,请不要修改上述消息,此消息用于后续数据清洗使用
// Please do not modify this message
value:
"Share from [ChatGPT Next Web]: https://github.com/Yidadaa/ChatGPT-Next-Web",
},
]);
console.log("[Share]", messages, msgs);
const clientConfig = getClientConfig();
const proxyUrl = "/sharegpt";
const rawUrl = "https://sharegpt.com/api/conversations";
const shareUrl = clientConfig?.isApp ? rawUrl : proxyUrl;
const res = await fetch(shareUrl, {
body: JSON.stringify({
avatarUrl,
items: msgs,
}),
headers: {
"Content-Type": "application/json",
},
method: "POST",
});
const resJson = await res.json();
console.log("[Share]", resJson);
if (resJson.id) {
return `https://shareg.pt/${resJson.id}`;
}
}

28
app/client/core.ts Normal file
View File

@@ -0,0 +1,28 @@
import { MaskConfig, ProviderConfig } from "../store";
import { shareToShareGPT } from "./common/share";
import { createOpenAiClient } from "./openai";
import { ChatControllerPool } from "./common/controller";
export const LLMClients = {
openai: createOpenAiClient,
};
export function createLLMClient(
config: ProviderConfig,
maskConfig: MaskConfig,
) {
return LLMClients[maskConfig.provider as any as keyof typeof LLMClients](
config,
maskConfig.modelConfig,
);
}
export function createApi() {
return {
createLLMClient,
shareToShareGPT,
controllerManager: ChatControllerPool,
};
}
export const api = createApi();

2
app/client/index.ts Normal file
View File

@@ -0,0 +1,2 @@
export * from "./types";
export * from "./core";

View File

@@ -0,0 +1,20 @@
import { COMMON_PROVIDER_CONFIG } from "../common/config";
export const OpenAIConfig = {
model: {
model: "gpt-3.5-turbo" as string,
summarizeModel: "gpt-3.5-turbo",
temperature: 0.5,
top_p: 1,
max_tokens: 2000,
presence_penalty: 0,
frequency_penalty: 0,
},
provider: {
name: "OpenAI",
endpoint: "https://api.openai.com",
apiKey: "",
...COMMON_PROVIDER_CONFIG,
},
};

295
app/client/openai/index.ts Normal file
View File

@@ -0,0 +1,295 @@
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import {
API_PREFIX,
ApiPath,
DEFAULT_MODELS,
OpenaiPath,
} from "@/app/constant";
import { ModelConfig, ProviderConfig } from "@/app/store";
import { OpenAI } from "./types";
import { ChatOptions, LLMModel, LLMUsage } from "../types";
import Locale from "@/app/locales";
import { prettyObject } from "@/app/utils/format";
import { getApiPath } from "@/app/utils/path";
import { trimEnd } from "@/app/utils/string";
import { omit } from "@/app/utils/object";
import { createLogger } from "@/app/utils/log";
import { getAuthHeaders } from "../common/auth";
export function createOpenAiClient(
providerConfigs: ProviderConfig,
modelConfig: ModelConfig,
) {
const openaiConfig = { ...providerConfigs.openai };
const logger = createLogger("[OpenAI Client]");
const openaiModelConfig = { ...modelConfig.openai };
return {
headers() {
return {
"Content-Type": "application/json",
...getAuthHeaders(openaiConfig.apiKey),
};
},
path(path: OpenaiPath): string {
let baseUrl = openaiConfig.endpoint;
// if endpoint is empty, use default endpoint
if (baseUrl.trim().length === 0) {
baseUrl = getApiPath(ApiPath.OpenAI);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(API_PREFIX)) {
baseUrl = "https://" + baseUrl;
}
baseUrl = trimEnd(baseUrl, "/");
return `${baseUrl}/${path}`;
},
extractMessage(res: OpenAI.ChatCompletionResponse) {
return res.choices[0]?.message?.content ?? "";
},
beforeRequest(options: ChatOptions, stream = false) {
const messages = options.messages.map((v) => ({
role: v.role,
content: v.content,
}));
if (options.shouldSummarize) {
openaiModelConfig.model = openaiModelConfig.summarizeModel;
}
const requestBody: OpenAI.ChatCompletionRequest = {
messages,
stream,
...omit(openaiModelConfig, "summarizeModel"),
};
const path = this.path(OpenaiPath.Chat);
logger.log("path = ", path, requestBody);
const controller = new AbortController();
options.onController?.(controller);
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: this.headers(),
};
return {
path,
payload,
controller,
};
},
async chat(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(
options,
false,
);
controller.signal.onabort = () => options.onFinish("");
const res = await fetch(path, payload);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},
async chatStream(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(options, true);
const context = {
text: "",
finished: false,
};
const finish = () => {
if (!context.finished) {
options.onFinish(context.text);
context.finished = true;
}
};
controller.signal.onabort = finish;
fetchEventSource(path, {
...payload,
async onopen(res) {
const contentType = res.headers.get("content-type");
logger.log("response content type: ", contentType);
if (contentType?.startsWith("text/plain")) {
context.text = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [context.text];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
context.text = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || context.finished) {
return finish();
}
const chunk = msg.data;
try {
const chunkJson = JSON.parse(
chunk,
) as OpenAI.ChatCompletionStreamResponse;
const delta = chunkJson.choices[0].delta.content;
if (delta) {
context.text += delta;
options.onUpdate?.(context.text, delta);
}
} catch (e) {
logger.error("[Request] parse error", chunk, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
},
openWhenHidden: true,
});
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},
async usage() {
const formatDate = (d: Date) =>
`${d.getFullYear()}-${(d.getMonth() + 1)
.toString()
.padStart(2, "0")}-${d.getDate().toString().padStart(2, "0")}`;
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
const now = new Date();
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
const startDate = formatDate(startOfMonth);
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
const [used, subs] = await Promise.all([
fetch(
`${this.path(
OpenaiPath.Usage,
)}?start_date=${startDate}&end_date=${endDate}`,
{
method: "GET",
headers: this.headers(),
},
),
fetch(this.path(OpenaiPath.Subs), {
method: "GET",
headers: this.headers(),
}),
]);
if (!used.ok || !subs.ok) {
throw new Error("Failed to query usage from openai");
}
const response = (await used.json()) as {
total_usage?: number;
error?: {
type: string;
message: string;
};
};
const total = (await subs.json()) as {
hard_limit_usd?: number;
};
if (response.error?.type) {
throw Error(response.error?.message);
}
response.total_usage = Math.round(response.total_usage ?? 0) / 100;
total.hard_limit_usd =
Math.round((total.hard_limit_usd ?? 0) * 100) / 100;
return {
used: response.total_usage,
total: total.hard_limit_usd,
} as LLMUsage;
},
async models(): Promise<LLMModel[]> {
const customModels = openaiConfig.customModels
.split(",")
.map((v) => v.trim())
.map((v) => ({
name: v,
available: true,
}));
if (!openaiConfig.autoFetchModels) {
return [...DEFAULT_MODELS.slice(), ...customModels];
}
const res = await fetch(this.path(OpenaiPath.ListModel), {
method: "GET",
headers: this.headers(),
});
const resJson = (await res.json()) as OpenAI.ListModelResponse;
const chatModels =
resJson.data?.filter((m) => m.id.startsWith("gpt-")) ?? [];
return chatModels
.map((m) => ({
name: m.id,
available: true,
}))
.concat(customModels);
},
};
}

View File

@@ -0,0 +1,79 @@
export namespace OpenAI {
export type Role = "system" | "user" | "assistant" | "function";
export type FinishReason = "stop" | "length" | "function_call";
export interface Message {
role: Role;
content?: string;
function_call?: {
name: string;
arguments: string;
};
}
export interface Function {
name: string;
description?: string;
parameters: object;
}
export interface ListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
export interface ChatCompletionChoice {
index: number;
message: Message;
finish_reason: FinishReason;
}
export interface ChatCompletionUsage {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
}
export interface ChatCompletionResponse {
id: string;
object: string;
created: number;
model: string;
choices: ChatCompletionChoice[];
usage: ChatCompletionUsage;
}
export interface ChatCompletionChunkChoice {
index: number;
delta: Message;
finish_reason?: FinishReason;
}
export interface ChatCompletionStreamResponse {
object: string;
created: number;
model: string;
choices: ChatCompletionChunkChoice[];
}
export interface ChatCompletionRequest {
model: string;
messages: Message[];
functions?: Function[];
function_call?: "none" | "auto";
temperature?: number;
top_p?: number;
n?: number;
stream?: boolean;
stop?: string | string[];
max_tokens?: number;
presence_penalty?: number;
frequency_penalty?: number;
}
}

View File

@@ -1,281 +0,0 @@
import {
DEFAULT_API_HOST,
DEFAULT_MODELS,
OpenaiPath,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import { ChatOptions, getHeaders, LLMApi, LLMModel, LLMUsage } from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
export interface OpenAIListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
export class ChatGPTApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
let openaiUrl = useAccessStore.getState().openaiUrl;
const apiPath = "/api/openai";
if (openaiUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
openaiUrl = isApp ? DEFAULT_API_HOST : apiPath;
}
if (openaiUrl.endsWith("/")) {
openaiUrl = openaiUrl.slice(0, openaiUrl.length - 1);
}
if (!openaiUrl.startsWith("http") && !openaiUrl.startsWith(apiPath)) {
openaiUrl = "https://" + openaiUrl;
}
return [openaiUrl, path].join("/");
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
}
async chat(options: ChatOptions) {
const messages = options.messages.map((v) => ({
role: v.role,
content: v.content,
}));
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
},
};
const requestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
};
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path(OpenaiPath.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
let responseText = "";
let finished = false;
const finish = () => {
if (!finished) {
options.onFinish(responseText);
finished = true;
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[OpenAI] request response content type: ",
contentType,
);
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const delta = json.choices[0].delta.content;
if (delta) {
responseText += delta;
options.onUpdate?.(responseText, delta);
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
const formatDate = (d: Date) =>
`${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, "0")}-${d
.getDate()
.toString()
.padStart(2, "0")}`;
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
const now = new Date();
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
const startDate = formatDate(startOfMonth);
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
const [used, subs] = await Promise.all([
fetch(
this.path(
`${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`,
),
{
method: "GET",
headers: getHeaders(),
},
),
fetch(this.path(OpenaiPath.SubsPath), {
method: "GET",
headers: getHeaders(),
}),
]);
if (used.status === 401) {
throw new Error(Locale.Error.Unauthorized);
}
if (!used.ok || !subs.ok) {
throw new Error("Failed to query usage from openai");
}
const response = (await used.json()) as {
total_usage?: number;
error?: {
type: string;
message: string;
};
};
const total = (await subs.json()) as {
hard_limit_usd?: number;
};
if (response.error && response.error.type) {
throw Error(response.error.message);
}
if (response.total_usage) {
response.total_usage = Math.round(response.total_usage) / 100;
}
if (total.hard_limit_usd) {
total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100;
}
return {
used: response.total_usage,
total: total.hard_limit_usd,
} as LLMUsage;
}
async models(): Promise<LLMModel[]> {
if (this.disableListModels) {
return DEFAULT_MODELS.slice();
}
const res = await fetch(this.path(OpenaiPath.ListModelPath), {
method: "GET",
headers: {
...getHeaders(),
},
});
const resJson = (await res.json()) as OpenAIListModelResponse;
const chatModels = resJson.data?.filter((m) => m.id.startsWith("gpt-"));
console.log("[Models]", chatModels);
if (!chatModels) {
return [];
}
return chatModels.map((m) => ({
name: m.id,
available: true,
}));
}
}
export { OpenaiPath };

39
app/client/types.ts Normal file
View File

@@ -0,0 +1,39 @@
import { DEFAULT_MODELS } from "../constant";
export interface LLMUsage {
used: number;
total: number;
available: boolean;
}
export interface LLMModel {
name: string;
available: boolean;
}
export const ROLES = ["system", "user", "assistant"] as const;
export type MessageRole = (typeof ROLES)[number];
export type ChatModel = (typeof DEFAULT_MODELS)[number]["name"];
export interface RequestMessage {
role: MessageRole;
content: string;
}
export interface ChatOptions {
messages: RequestMessage[];
shouldSummarize?: boolean;
onUpdate?: (message: string, chunk: string) => void;
onFinish: (message: string) => void;
onError?: (err: Error) => void;
onController?: (controller: AbortController) => void;
}
export type LLMClient = {
chat(options: ChatOptions): Promise<void>;
chatStream(options: ChatOptions): Promise<void>;
usage(): Promise<LLMUsage>;
models(): Promise<LLMModel[]>;
};