ChatGPT-Next-Web/app/client/openai/index.ts

296 lines
7.8 KiB
TypeScript

import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import {
API_PREFIX,
ApiPath,
DEFAULT_MODELS,
OpenaiPath,
} from "@/app/constant";
import { ModelConfig, ProviderConfig } from "@/app/store";
import { OpenAI } from "./types";
import { ChatOptions, LLMModel, LLMUsage } from "../types";
import Locale from "@/app/locales";
import { prettyObject } from "@/app/utils/format";
import { getApiPath } from "@/app/utils/path";
import { trimEnd } from "@/app/utils/string";
import { omit } from "@/app/utils/object";
import { createLogger } from "@/app/utils/log";
import { getAuthHeaders } from "../common/auth";
export function createOpenAiClient(
providerConfigs: ProviderConfig,
modelConfig: ModelConfig,
) {
const openaiConfig = { ...providerConfigs.openai };
const logger = createLogger("[OpenAI Client]");
const openaiModelConfig = { ...modelConfig.openai };
return {
headers() {
return {
"Content-Type": "application/json",
...getAuthHeaders(openaiConfig.apiKey),
};
},
path(path: OpenaiPath): string {
let baseUrl = openaiConfig.endpoint;
// if endpoint is empty, use default endpoint
if (baseUrl.trim().length === 0) {
baseUrl = getApiPath(ApiPath.OpenAI);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(API_PREFIX)) {
baseUrl = "https://" + baseUrl;
}
baseUrl = trimEnd(baseUrl, "/");
return `${baseUrl}/${path}`;
},
extractMessage(res: OpenAI.ChatCompletionResponse) {
return res.choices[0]?.message?.content ?? "";
},
beforeRequest(options: ChatOptions, stream = false) {
const messages = options.messages.map((v) => ({
role: v.role,
content: v.content,
}));
if (options.shouldSummarize) {
openaiModelConfig.model = openaiModelConfig.summarizeModel;
}
const requestBody: OpenAI.ChatCompletionRequest = {
messages,
stream,
...omit(openaiModelConfig, "summarizeModel"),
};
const path = this.path(OpenaiPath.Chat);
logger.log("path = ", path, requestBody);
const controller = new AbortController();
options.onController?.(controller);
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: this.headers(),
};
return {
path,
payload,
controller,
};
},
async chat(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(
options,
false,
);
controller.signal.onabort = () => options.onFinish("");
const res = await fetch(path, payload);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},
async chatStream(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(options, true);
const context = {
text: "",
finished: false,
};
const finish = () => {
if (!context.finished) {
options.onFinish(context.text);
context.finished = true;
}
};
controller.signal.onabort = finish;
fetchEventSource(path, {
...payload,
async onopen(res) {
const contentType = res.headers.get("content-type");
logger.log("response content type: ", contentType);
if (contentType?.startsWith("text/plain")) {
context.text = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [context.text];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
context.text = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || context.finished) {
return finish();
}
const chunk = msg.data;
try {
const chunkJson = JSON.parse(
chunk,
) as OpenAI.ChatCompletionStreamResponse;
const delta = chunkJson.choices[0].delta.content;
if (delta) {
context.text += delta;
options.onUpdate?.(context.text, delta);
}
} catch (e) {
logger.error("[Request] parse error", chunk, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
},
openWhenHidden: true,
});
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},
async usage() {
const formatDate = (d: Date) =>
`${d.getFullYear()}-${(d.getMonth() + 1)
.toString()
.padStart(2, "0")}-${d.getDate().toString().padStart(2, "0")}`;
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
const now = new Date();
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
const startDate = formatDate(startOfMonth);
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
const [used, subs] = await Promise.all([
fetch(
`${this.path(
OpenaiPath.Usage,
)}?start_date=${startDate}&end_date=${endDate}`,
{
method: "GET",
headers: this.headers(),
},
),
fetch(this.path(OpenaiPath.Subs), {
method: "GET",
headers: this.headers(),
}),
]);
if (!used.ok || !subs.ok) {
throw new Error("Failed to query usage from openai");
}
const response = (await used.json()) as {
total_usage?: number;
error?: {
type: string;
message: string;
};
};
const total = (await subs.json()) as {
hard_limit_usd?: number;
};
if (response.error?.type) {
throw Error(response.error?.message);
}
response.total_usage = Math.round(response.total_usage ?? 0) / 100;
total.hard_limit_usd =
Math.round((total.hard_limit_usd ?? 0) * 100) / 100;
return {
used: response.total_usage,
total: total.hard_limit_usd,
} as LLMUsage;
},
async models(): Promise<LLMModel[]> {
const customModels = openaiConfig.customModels
.split(",")
.map((v) => v.trim())
.map((v) => ({
name: v,
available: true,
}));
if (!openaiConfig.autoFetchModels) {
return [...DEFAULT_MODELS.slice(), ...customModels];
}
const res = await fetch(this.path(OpenaiPath.ListModel), {
method: "GET",
headers: this.headers(),
});
const resJson = (await res.json()) as OpenAI.ListModelResponse;
const chatModels =
resJson.data?.filter((m) => m.id.startsWith("gpt-")) ?? [];
return chatModels
.map((m) => ({
name: m.id,
available: true,
}))
.concat(customModels);
},
};
}