Merge pull request #6204 from bestsanmao/ali_bytedance_reasoning_content
add 3 type of reasoning_content support (+deepseek-r1@OpenAI @Alibaba @ByteDance), parse <think></think> from SSE
This commit is contained in:
commit
12863f5213
|
@ -1,12 +1,13 @@
|
|||
"use client";
|
||||
import { ApiPath, Alibaba, ALIBABA_BASE_URL } from "@/app/constant";
|
||||
import {
|
||||
ApiPath,
|
||||
Alibaba,
|
||||
ALIBABA_BASE_URL,
|
||||
REQUEST_TIMEOUT_MS,
|
||||
} from "@/app/constant";
|
||||
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
|
||||
|
||||
useAccessStore,
|
||||
useAppConfig,
|
||||
useChatStore,
|
||||
ChatMessageTool,
|
||||
usePluginStore,
|
||||
} from "@/app/store";
|
||||
import { streamWithThink } from "@/app/utils/chat";
|
||||
import {
|
||||
ChatOptions,
|
||||
getHeaders,
|
||||
|
@ -15,14 +16,12 @@ import {
|
|||
SpeechOptions,
|
||||
MultimodalContent,
|
||||
} from "../api";
|
||||
import Locale from "../../locales";
|
||||
import {
|
||||
EventStreamContentType,
|
||||
fetchEventSource,
|
||||
} from "@fortaine/fetch-event-source";
|
||||
import { prettyObject } from "@/app/utils/format";
|
||||
import { getClientConfig } from "@/app/config/client";
|
||||
import { getMessageTextContent } from "@/app/utils";
|
||||
import {
|
||||
getMessageTextContent,
|
||||
getMessageTextContentWithoutThinking,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import { fetch } from "@/app/utils/stream";
|
||||
|
||||
export interface OpenAIListModelResponse {
|
||||
|
@ -92,7 +91,10 @@ export class QwenApi implements LLMApi {
|
|||
async chat(options: ChatOptions) {
|
||||
const messages = options.messages.map((v) => ({
|
||||
role: v.role,
|
||||
content: getMessageTextContent(v),
|
||||
content:
|
||||
v.role === "assistant"
|
||||
? getMessageTextContentWithoutThinking(v)
|
||||
: getMessageTextContent(v),
|
||||
}));
|
||||
|
||||
const modelConfig = {
|
||||
|
@ -122,134 +124,118 @@ export class QwenApi implements LLMApi {
|
|||
options.onController?.(controller);
|
||||
|
||||
try {
|
||||
const headers = {
|
||||
...getHeaders(),
|
||||
"X-DashScope-SSE": shouldStream ? "enable" : "disable",
|
||||
};
|
||||
|
||||
const chatPath = this.path(Alibaba.ChatPath);
|
||||
const chatPayload = {
|
||||
method: "POST",
|
||||
body: JSON.stringify(requestPayload),
|
||||
signal: controller.signal,
|
||||
headers: {
|
||||
...getHeaders(),
|
||||
"X-DashScope-SSE": shouldStream ? "enable" : "disable",
|
||||
},
|
||||
headers: headers,
|
||||
};
|
||||
|
||||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
let responseText = "";
|
||||
let remainText = "";
|
||||
let finished = false;
|
||||
let responseRes: Response;
|
||||
const [tools, funcs] = usePluginStore
|
||||
.getState()
|
||||
.getAsTools(
|
||||
useChatStore.getState().currentSession().mask?.plugin || [],
|
||||
);
|
||||
return streamWithThink(
|
||||
chatPath,
|
||||
requestPayload,
|
||||
headers,
|
||||
tools as any,
|
||||
funcs,
|
||||
controller,
|
||||
// parseSSE
|
||||
(text: string, runTools: ChatMessageTool[]) => {
|
||||
// console.log("parseSSE", text, runTools);
|
||||
const json = JSON.parse(text);
|
||||
const choices = json.output.choices as Array<{
|
||||
message: {
|
||||
content: string | null;
|
||||
tool_calls: ChatMessageTool[];
|
||||
reasoning_content: string | null;
|
||||
};
|
||||
}>;
|
||||
|
||||
// animate response to make it looks smooth
|
||||
function animateResponseText() {
|
||||
if (finished || controller.signal.aborted) {
|
||||
responseText += remainText;
|
||||
console.log("[Response Animation] finished");
|
||||
if (responseText?.length === 0) {
|
||||
options.onError?.(new Error("empty response from server"));
|
||||
}
|
||||
return;
|
||||
}
|
||||
if (!choices?.length) return { isThinking: false, content: "" };
|
||||
|
||||
if (remainText.length > 0) {
|
||||
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
|
||||
const fetchText = remainText.slice(0, fetchCount);
|
||||
responseText += fetchText;
|
||||
remainText = remainText.slice(fetchCount);
|
||||
options.onUpdate?.(responseText, fetchText);
|
||||
}
|
||||
|
||||
requestAnimationFrame(animateResponseText);
|
||||
}
|
||||
|
||||
// start animaion
|
||||
animateResponseText();
|
||||
|
||||
const finish = () => {
|
||||
if (!finished) {
|
||||
finished = true;
|
||||
options.onFinish(responseText + remainText, responseRes);
|
||||
}
|
||||
};
|
||||
|
||||
controller.signal.onabort = finish;
|
||||
|
||||
fetchEventSource(chatPath, {
|
||||
fetch: fetch as any,
|
||||
...chatPayload,
|
||||
async onopen(res) {
|
||||
clearTimeout(requestTimeoutId);
|
||||
const contentType = res.headers.get("content-type");
|
||||
console.log(
|
||||
"[Alibaba] request response content type: ",
|
||||
contentType,
|
||||
);
|
||||
responseRes = res;
|
||||
|
||||
if (contentType?.startsWith("text/plain")) {
|
||||
responseText = await res.clone().text();
|
||||
return finish();
|
||||
const tool_calls = choices[0]?.message?.tool_calls;
|
||||
if (tool_calls?.length > 0) {
|
||||
const index = tool_calls[0]?.index;
|
||||
const id = tool_calls[0]?.id;
|
||||
const args = tool_calls[0]?.function?.arguments;
|
||||
if (id) {
|
||||
runTools.push({
|
||||
id,
|
||||
type: tool_calls[0]?.type,
|
||||
function: {
|
||||
name: tool_calls[0]?.function?.name as string,
|
||||
arguments: args,
|
||||
},
|
||||
});
|
||||
} else {
|
||||
// @ts-ignore
|
||||
runTools[index]["function"]["arguments"] += args;
|
||||
}
|
||||
}
|
||||
|
||||
const reasoning = choices[0]?.message?.reasoning_content;
|
||||
const content = choices[0]?.message?.content;
|
||||
|
||||
// Skip if both content and reasoning_content are empty or null
|
||||
if (
|
||||
!res.ok ||
|
||||
!res.headers
|
||||
.get("content-type")
|
||||
?.startsWith(EventStreamContentType) ||
|
||||
res.status !== 200
|
||||
(!reasoning || reasoning.length === 0) &&
|
||||
(!content || content.length === 0)
|
||||
) {
|
||||
const responseTexts = [responseText];
|
||||
let extraInfo = await res.clone().text();
|
||||
try {
|
||||
const resJson = await res.clone().json();
|
||||
extraInfo = prettyObject(resJson);
|
||||
} catch {}
|
||||
|
||||
if (res.status === 401) {
|
||||
responseTexts.push(Locale.Error.Unauthorized);
|
||||
}
|
||||
|
||||
if (extraInfo) {
|
||||
responseTexts.push(extraInfo);
|
||||
}
|
||||
|
||||
responseText = responseTexts.join("\n\n");
|
||||
|
||||
return finish();
|
||||
return {
|
||||
isThinking: false,
|
||||
content: "",
|
||||
};
|
||||
}
|
||||
},
|
||||
onmessage(msg) {
|
||||
if (msg.data === "[DONE]" || finished) {
|
||||
return finish();
|
||||
}
|
||||
const text = msg.data;
|
||||
try {
|
||||
const json = JSON.parse(text);
|
||||
const choices = json.output.choices as Array<{
|
||||
message: { content: string };
|
||||
}>;
|
||||
const delta = choices[0]?.message?.content;
|
||||
if (delta) {
|
||||
remainText += delta;
|
||||
}
|
||||
} catch (e) {
|
||||
console.error("[Request] parse error", text, msg);
|
||||
|
||||
if (reasoning && reasoning.length > 0) {
|
||||
return {
|
||||
isThinking: true,
|
||||
content: reasoning,
|
||||
};
|
||||
} else if (content && content.length > 0) {
|
||||
return {
|
||||
isThinking: false,
|
||||
content: content,
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
isThinking: false,
|
||||
content: "",
|
||||
};
|
||||
},
|
||||
onclose() {
|
||||
finish();
|
||||
// processToolMessage, include tool_calls message and tool call results
|
||||
(
|
||||
requestPayload: RequestPayload,
|
||||
toolCallMessage: any,
|
||||
toolCallResult: any[],
|
||||
) => {
|
||||
requestPayload?.input?.messages?.splice(
|
||||
requestPayload?.input?.messages?.length,
|
||||
0,
|
||||
toolCallMessage,
|
||||
...toolCallResult,
|
||||
);
|
||||
},
|
||||
onerror(e) {
|
||||
options.onError?.(e);
|
||||
throw e;
|
||||
},
|
||||
openWhenHidden: true,
|
||||
});
|
||||
options,
|
||||
);
|
||||
} else {
|
||||
const res = await fetch(chatPath, chatPayload);
|
||||
clearTimeout(requestTimeoutId);
|
||||
|
|
|
@ -1,10 +1,5 @@
|
|||
"use client";
|
||||
import {
|
||||
ApiPath,
|
||||
Baidu,
|
||||
BAIDU_BASE_URL,
|
||||
REQUEST_TIMEOUT_MS,
|
||||
} from "@/app/constant";
|
||||
import { ApiPath, Baidu, BAIDU_BASE_URL } from "@/app/constant";
|
||||
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
|
||||
import { getAccessToken } from "@/app/utils/baidu";
|
||||
|
||||
|
@ -23,7 +18,7 @@ import {
|
|||
} from "@fortaine/fetch-event-source";
|
||||
import { prettyObject } from "@/app/utils/format";
|
||||
import { getClientConfig } from "@/app/config/client";
|
||||
import { getMessageTextContent } from "@/app/utils";
|
||||
import { getMessageTextContent, getTimeoutMSByModel } from "@/app/utils";
|
||||
import { fetch } from "@/app/utils/stream";
|
||||
|
||||
export interface OpenAIListModelResponse {
|
||||
|
@ -155,7 +150,7 @@ export class ErnieApi implements LLMApi {
|
|||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
"use client";
|
||||
import { ApiPath, ByteDance, BYTEDANCE_BASE_URL } from "@/app/constant";
|
||||
import {
|
||||
ApiPath,
|
||||
ByteDance,
|
||||
BYTEDANCE_BASE_URL,
|
||||
REQUEST_TIMEOUT_MS,
|
||||
} from "@/app/constant";
|
||||
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
|
||||
useAccessStore,
|
||||
useAppConfig,
|
||||
useChatStore,
|
||||
ChatMessageTool,
|
||||
usePluginStore,
|
||||
} from "@/app/store";
|
||||
|
||||
import {
|
||||
ChatOptions,
|
||||
|
@ -15,14 +16,14 @@ import {
|
|||
MultimodalContent,
|
||||
SpeechOptions,
|
||||
} from "../api";
|
||||
import Locale from "../../locales";
|
||||
import {
|
||||
EventStreamContentType,
|
||||
fetchEventSource,
|
||||
} from "@fortaine/fetch-event-source";
|
||||
import { prettyObject } from "@/app/utils/format";
|
||||
|
||||
import { streamWithThink } from "@/app/utils/chat";
|
||||
import { getClientConfig } from "@/app/config/client";
|
||||
import { preProcessImageContent } from "@/app/utils/chat";
|
||||
import {
|
||||
getMessageTextContentWithoutThinking,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import { fetch } from "@/app/utils/stream";
|
||||
|
||||
export interface OpenAIListModelResponse {
|
||||
|
@ -34,7 +35,7 @@ export interface OpenAIListModelResponse {
|
|||
}>;
|
||||
}
|
||||
|
||||
interface RequestPayload {
|
||||
interface RequestPayloadForByteDance {
|
||||
messages: {
|
||||
role: "system" | "user" | "assistant";
|
||||
content: string | MultimodalContent[];
|
||||
|
@ -86,7 +87,10 @@ export class DoubaoApi implements LLMApi {
|
|||
async chat(options: ChatOptions) {
|
||||
const messages: ChatOptions["messages"] = [];
|
||||
for (const v of options.messages) {
|
||||
const content = await preProcessImageContent(v.content);
|
||||
const content =
|
||||
v.role === "assistant"
|
||||
? getMessageTextContentWithoutThinking(v)
|
||||
: await preProcessImageContent(v.content);
|
||||
messages.push({ role: v.role, content });
|
||||
}
|
||||
|
||||
|
@ -99,7 +103,7 @@ export class DoubaoApi implements LLMApi {
|
|||
};
|
||||
|
||||
const shouldStream = !!options.config.stream;
|
||||
const requestPayload: RequestPayload = {
|
||||
const requestPayload: RequestPayloadForByteDance = {
|
||||
messages,
|
||||
stream: shouldStream,
|
||||
model: modelConfig.model,
|
||||
|
@ -124,119 +128,101 @@ export class DoubaoApi implements LLMApi {
|
|||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
let responseText = "";
|
||||
let remainText = "";
|
||||
let finished = false;
|
||||
let responseRes: Response;
|
||||
const [tools, funcs] = usePluginStore
|
||||
.getState()
|
||||
.getAsTools(
|
||||
useChatStore.getState().currentSession().mask?.plugin || [],
|
||||
);
|
||||
return streamWithThink(
|
||||
chatPath,
|
||||
requestPayload,
|
||||
getHeaders(),
|
||||
tools as any,
|
||||
funcs,
|
||||
controller,
|
||||
// parseSSE
|
||||
(text: string, runTools: ChatMessageTool[]) => {
|
||||
// console.log("parseSSE", text, runTools);
|
||||
const json = JSON.parse(text);
|
||||
const choices = json.choices as Array<{
|
||||
delta: {
|
||||
content: string | null;
|
||||
tool_calls: ChatMessageTool[];
|
||||
reasoning_content: string | null;
|
||||
};
|
||||
}>;
|
||||
|
||||
// animate response to make it looks smooth
|
||||
function animateResponseText() {
|
||||
if (finished || controller.signal.aborted) {
|
||||
responseText += remainText;
|
||||
console.log("[Response Animation] finished");
|
||||
if (responseText?.length === 0) {
|
||||
options.onError?.(new Error("empty response from server"));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (remainText.length > 0) {
|
||||
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
|
||||
const fetchText = remainText.slice(0, fetchCount);
|
||||
responseText += fetchText;
|
||||
remainText = remainText.slice(fetchCount);
|
||||
options.onUpdate?.(responseText, fetchText);
|
||||
}
|
||||
|
||||
requestAnimationFrame(animateResponseText);
|
||||
}
|
||||
|
||||
// start animaion
|
||||
animateResponseText();
|
||||
|
||||
const finish = () => {
|
||||
if (!finished) {
|
||||
finished = true;
|
||||
options.onFinish(responseText + remainText, responseRes);
|
||||
}
|
||||
};
|
||||
|
||||
controller.signal.onabort = finish;
|
||||
|
||||
fetchEventSource(chatPath, {
|
||||
fetch: fetch as any,
|
||||
...chatPayload,
|
||||
async onopen(res) {
|
||||
clearTimeout(requestTimeoutId);
|
||||
const contentType = res.headers.get("content-type");
|
||||
console.log(
|
||||
"[ByteDance] request response content type: ",
|
||||
contentType,
|
||||
);
|
||||
responseRes = res;
|
||||
if (contentType?.startsWith("text/plain")) {
|
||||
responseText = await res.clone().text();
|
||||
return finish();
|
||||
if (!choices?.length) return { isThinking: false, content: "" };
|
||||
|
||||
const tool_calls = choices[0]?.delta?.tool_calls;
|
||||
if (tool_calls?.length > 0) {
|
||||
const index = tool_calls[0]?.index;
|
||||
const id = tool_calls[0]?.id;
|
||||
const args = tool_calls[0]?.function?.arguments;
|
||||
if (id) {
|
||||
runTools.push({
|
||||
id,
|
||||
type: tool_calls[0]?.type,
|
||||
function: {
|
||||
name: tool_calls[0]?.function?.name as string,
|
||||
arguments: args,
|
||||
},
|
||||
});
|
||||
} else {
|
||||
// @ts-ignore
|
||||
runTools[index]["function"]["arguments"] += args;
|
||||
}
|
||||
}
|
||||
const reasoning = choices[0]?.delta?.reasoning_content;
|
||||
const content = choices[0]?.delta?.content;
|
||||
|
||||
// Skip if both content and reasoning_content are empty or null
|
||||
if (
|
||||
!res.ok ||
|
||||
!res.headers
|
||||
.get("content-type")
|
||||
?.startsWith(EventStreamContentType) ||
|
||||
res.status !== 200
|
||||
(!reasoning || reasoning.length === 0) &&
|
||||
(!content || content.length === 0)
|
||||
) {
|
||||
const responseTexts = [responseText];
|
||||
let extraInfo = await res.clone().text();
|
||||
try {
|
||||
const resJson = await res.clone().json();
|
||||
extraInfo = prettyObject(resJson);
|
||||
} catch {}
|
||||
|
||||
if (res.status === 401) {
|
||||
responseTexts.push(Locale.Error.Unauthorized);
|
||||
}
|
||||
|
||||
if (extraInfo) {
|
||||
responseTexts.push(extraInfo);
|
||||
}
|
||||
|
||||
responseText = responseTexts.join("\n\n");
|
||||
|
||||
return finish();
|
||||
return {
|
||||
isThinking: false,
|
||||
content: "",
|
||||
};
|
||||
}
|
||||
},
|
||||
onmessage(msg) {
|
||||
if (msg.data === "[DONE]" || finished) {
|
||||
return finish();
|
||||
}
|
||||
const text = msg.data;
|
||||
try {
|
||||
const json = JSON.parse(text);
|
||||
const choices = json.choices as Array<{
|
||||
delta: { content: string };
|
||||
}>;
|
||||
const delta = choices[0]?.delta?.content;
|
||||
if (delta) {
|
||||
remainText += delta;
|
||||
}
|
||||
} catch (e) {
|
||||
console.error("[Request] parse error", text, msg);
|
||||
|
||||
if (reasoning && reasoning.length > 0) {
|
||||
return {
|
||||
isThinking: true,
|
||||
content: reasoning,
|
||||
};
|
||||
} else if (content && content.length > 0) {
|
||||
return {
|
||||
isThinking: false,
|
||||
content: content,
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
isThinking: false,
|
||||
content: "",
|
||||
};
|
||||
},
|
||||
onclose() {
|
||||
finish();
|
||||
// processToolMessage, include tool_calls message and tool call results
|
||||
(
|
||||
requestPayload: RequestPayloadForByteDance,
|
||||
toolCallMessage: any,
|
||||
toolCallResult: any[],
|
||||
) => {
|
||||
requestPayload?.messages?.splice(
|
||||
requestPayload?.messages?.length,
|
||||
0,
|
||||
toolCallMessage,
|
||||
...toolCallResult,
|
||||
);
|
||||
},
|
||||
onerror(e) {
|
||||
options.onError?.(e);
|
||||
throw e;
|
||||
},
|
||||
openWhenHidden: true,
|
||||
});
|
||||
options,
|
||||
);
|
||||
} else {
|
||||
const res = await fetch(chatPath, chatPayload);
|
||||
clearTimeout(requestTimeoutId);
|
||||
|
|
|
@ -1,12 +1,6 @@
|
|||
"use client";
|
||||
// azure and openai, using same models. so using same LLMApi.
|
||||
import {
|
||||
ApiPath,
|
||||
DEEPSEEK_BASE_URL,
|
||||
DeepSeek,
|
||||
REQUEST_TIMEOUT_MS,
|
||||
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
||||
} from "@/app/constant";
|
||||
import { ApiPath, DEEPSEEK_BASE_URL, DeepSeek } from "@/app/constant";
|
||||
import {
|
||||
useAccessStore,
|
||||
useAppConfig,
|
||||
|
@ -26,6 +20,7 @@ import { getClientConfig } from "@/app/config/client";
|
|||
import {
|
||||
getMessageTextContent,
|
||||
getMessageTextContentWithoutThinking,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import { RequestPayload } from "./openai";
|
||||
import { fetch } from "@/app/utils/stream";
|
||||
|
@ -116,16 +111,10 @@ export class DeepSeekApi implements LLMApi {
|
|||
headers: getHeaders(),
|
||||
};
|
||||
|
||||
// console.log(chatPayload);
|
||||
|
||||
const isR1 =
|
||||
options.config.model.endsWith("-reasoner") ||
|
||||
options.config.model.endsWith("-r1");
|
||||
|
||||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
isR1 ? REQUEST_TIMEOUT_MS_FOR_THINKING : REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
|
@ -176,8 +165,8 @@ export class DeepSeekApi implements LLMApi {
|
|||
|
||||
// Skip if both content and reasoning_content are empty or null
|
||||
if (
|
||||
(!reasoning || reasoning.trim().length === 0) &&
|
||||
(!content || content.trim().length === 0)
|
||||
(!reasoning || reasoning.length === 0) &&
|
||||
(!content || content.length === 0)
|
||||
) {
|
||||
return {
|
||||
isThinking: false,
|
||||
|
@ -185,12 +174,12 @@ export class DeepSeekApi implements LLMApi {
|
|||
};
|
||||
}
|
||||
|
||||
if (reasoning && reasoning.trim().length > 0) {
|
||||
if (reasoning && reasoning.length > 0) {
|
||||
return {
|
||||
isThinking: true,
|
||||
content: reasoning,
|
||||
};
|
||||
} else if (content && content.trim().length > 0) {
|
||||
} else if (content && content.length > 0) {
|
||||
return {
|
||||
isThinking: false,
|
||||
content: content,
|
||||
|
|
|
@ -1,10 +1,5 @@
|
|||
"use client";
|
||||
import {
|
||||
ApiPath,
|
||||
CHATGLM_BASE_URL,
|
||||
ChatGLM,
|
||||
REQUEST_TIMEOUT_MS,
|
||||
} from "@/app/constant";
|
||||
import { ApiPath, CHATGLM_BASE_URL, ChatGLM } from "@/app/constant";
|
||||
import {
|
||||
useAccessStore,
|
||||
useAppConfig,
|
||||
|
@ -21,7 +16,11 @@ import {
|
|||
SpeechOptions,
|
||||
} from "../api";
|
||||
import { getClientConfig } from "@/app/config/client";
|
||||
import { getMessageTextContent, isVisionModel } from "@/app/utils";
|
||||
import {
|
||||
getMessageTextContent,
|
||||
isVisionModel,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import { RequestPayload } from "./openai";
|
||||
import { fetch } from "@/app/utils/stream";
|
||||
import { preProcessImageContent } from "@/app/utils/chat";
|
||||
|
@ -191,7 +190,7 @@ export class ChatGLMApi implements LLMApi {
|
|||
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (modelType === "image" || modelType === "video") {
|
||||
|
|
|
@ -1,9 +1,4 @@
|
|||
import {
|
||||
ApiPath,
|
||||
Google,
|
||||
REQUEST_TIMEOUT_MS,
|
||||
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
||||
} from "@/app/constant";
|
||||
import { ApiPath, Google } from "@/app/constant";
|
||||
import {
|
||||
ChatOptions,
|
||||
getHeaders,
|
||||
|
@ -27,6 +22,7 @@ import {
|
|||
getMessageTextContent,
|
||||
getMessageImages,
|
||||
isVisionModel,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import { preProcessImageContent } from "@/app/utils/chat";
|
||||
import { nanoid } from "nanoid";
|
||||
|
@ -206,7 +202,7 @@ export class GeminiProApi implements LLMApi {
|
|||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
isThinking ? REQUEST_TIMEOUT_MS_FOR_THINKING : REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
|
|
|
@ -8,7 +8,6 @@ import {
|
|||
Azure,
|
||||
REQUEST_TIMEOUT_MS,
|
||||
ServiceProvider,
|
||||
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
||||
} from "@/app/constant";
|
||||
import {
|
||||
ChatMessageTool,
|
||||
|
@ -22,7 +21,7 @@ import {
|
|||
preProcessImageContent,
|
||||
uploadImage,
|
||||
base64Image2Blob,
|
||||
stream,
|
||||
streamWithThink,
|
||||
} from "@/app/utils/chat";
|
||||
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
|
||||
import { ModelSize, DalleQuality, DalleStyle } from "@/app/typing";
|
||||
|
@ -42,6 +41,7 @@ import {
|
|||
getMessageTextContent,
|
||||
isVisionModel,
|
||||
isDalle3 as _isDalle3,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import { fetch } from "@/app/utils/stream";
|
||||
|
||||
|
@ -294,7 +294,7 @@ export class ChatGPTApi implements LLMApi {
|
|||
useChatStore.getState().currentSession().mask?.plugin || [],
|
||||
);
|
||||
// console.log("getAsTools", tools, funcs);
|
||||
stream(
|
||||
streamWithThink(
|
||||
chatPath,
|
||||
requestPayload,
|
||||
getHeaders(),
|
||||
|
@ -309,8 +309,12 @@ export class ChatGPTApi implements LLMApi {
|
|||
delta: {
|
||||
content: string;
|
||||
tool_calls: ChatMessageTool[];
|
||||
reasoning_content: string | null;
|
||||
};
|
||||
}>;
|
||||
|
||||
if (!choices?.length) return { isThinking: false, content: "" };
|
||||
|
||||
const tool_calls = choices[0]?.delta?.tool_calls;
|
||||
if (tool_calls?.length > 0) {
|
||||
const id = tool_calls[0]?.id;
|
||||
|
@ -330,7 +334,37 @@ export class ChatGPTApi implements LLMApi {
|
|||
runTools[index]["function"]["arguments"] += args;
|
||||
}
|
||||
}
|
||||
return choices[0]?.delta?.content;
|
||||
|
||||
const reasoning = choices[0]?.delta?.reasoning_content;
|
||||
const content = choices[0]?.delta?.content;
|
||||
|
||||
// Skip if both content and reasoning_content are empty or null
|
||||
if (
|
||||
(!reasoning || reasoning.length === 0) &&
|
||||
(!content || content.length === 0)
|
||||
) {
|
||||
return {
|
||||
isThinking: false,
|
||||
content: "",
|
||||
};
|
||||
}
|
||||
|
||||
if (reasoning && reasoning.length > 0) {
|
||||
return {
|
||||
isThinking: true,
|
||||
content: reasoning,
|
||||
};
|
||||
} else if (content && content.length > 0) {
|
||||
return {
|
||||
isThinking: false,
|
||||
content: content,
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
isThinking: false,
|
||||
content: "",
|
||||
};
|
||||
},
|
||||
// processToolMessage, include tool_calls message and tool call results
|
||||
(
|
||||
|
@ -362,9 +396,7 @@ export class ChatGPTApi implements LLMApi {
|
|||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
isDalle3 || isO1OrO3
|
||||
? REQUEST_TIMEOUT_MS_FOR_THINKING
|
||||
: REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
const res = await fetch(chatPath, chatPayload);
|
||||
|
|
|
@ -4,7 +4,6 @@ import {
|
|||
ApiPath,
|
||||
SILICONFLOW_BASE_URL,
|
||||
SiliconFlow,
|
||||
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
||||
DEFAULT_MODELS,
|
||||
} from "@/app/constant";
|
||||
import {
|
||||
|
@ -27,6 +26,7 @@ import {
|
|||
getMessageTextContent,
|
||||
getMessageTextContentWithoutThinking,
|
||||
isVisionModel,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import { RequestPayload } from "./openai";
|
||||
|
||||
|
@ -137,7 +137,7 @@ export class SiliconflowApi implements LLMApi {
|
|||
// Use extended timeout for thinking models as they typically require more processing time
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
"use client";
|
||||
import { ApiPath, TENCENT_BASE_URL, REQUEST_TIMEOUT_MS } from "@/app/constant";
|
||||
import { ApiPath, TENCENT_BASE_URL } from "@/app/constant";
|
||||
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
|
||||
|
||||
import {
|
||||
|
@ -17,7 +17,11 @@ import {
|
|||
} from "@fortaine/fetch-event-source";
|
||||
import { prettyObject } from "@/app/utils/format";
|
||||
import { getClientConfig } from "@/app/config/client";
|
||||
import { getMessageTextContent, isVisionModel } from "@/app/utils";
|
||||
import {
|
||||
getMessageTextContent,
|
||||
isVisionModel,
|
||||
getTimeoutMSByModel,
|
||||
} from "@/app/utils";
|
||||
import mapKeys from "lodash-es/mapKeys";
|
||||
import mapValues from "lodash-es/mapValues";
|
||||
import isArray from "lodash-es/isArray";
|
||||
|
@ -135,7 +139,7 @@ export class HunyuanApi implements LLMApi {
|
|||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"use client";
|
||||
// azure and openai, using same models. so using same LLMApi.
|
||||
import { ApiPath, XAI_BASE_URL, XAI, REQUEST_TIMEOUT_MS } from "@/app/constant";
|
||||
import { ApiPath, XAI_BASE_URL, XAI } from "@/app/constant";
|
||||
import {
|
||||
useAccessStore,
|
||||
useAppConfig,
|
||||
|
@ -17,6 +17,7 @@ import {
|
|||
SpeechOptions,
|
||||
} from "../api";
|
||||
import { getClientConfig } from "@/app/config/client";
|
||||
import { getTimeoutMSByModel } from "@/app/utils";
|
||||
import { preProcessImageContent } from "@/app/utils/chat";
|
||||
import { RequestPayload } from "./openai";
|
||||
import { fetch } from "@/app/utils/stream";
|
||||
|
@ -103,7 +104,7 @@ export class XAIApi implements LLMApi {
|
|||
// make a fetch request
|
||||
const requestTimeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
REQUEST_TIMEOUT_MS,
|
||||
getTimeoutMSByModel(options.config.model),
|
||||
);
|
||||
|
||||
if (shouldStream) {
|
||||
|
|
20
app/utils.ts
20
app/utils.ts
|
@ -2,7 +2,11 @@ import { useEffect, useState } from "react";
|
|||
import { showToast } from "./components/ui-lib";
|
||||
import Locale from "./locales";
|
||||
import { RequestMessage } from "./client/api";
|
||||
import { ServiceProvider } from "./constant";
|
||||
import {
|
||||
REQUEST_TIMEOUT_MS,
|
||||
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
||||
ServiceProvider,
|
||||
} from "./constant";
|
||||
// import { fetch as tauriFetch, ResponseType } from "@tauri-apps/api/http";
|
||||
import { fetch as tauriStreamFetch } from "./utils/stream";
|
||||
import { VISION_MODEL_REGEXES, EXCLUDE_VISION_MODEL_REGEXES } from "./constant";
|
||||
|
@ -292,6 +296,20 @@ export function isDalle3(model: string) {
|
|||
return "dall-e-3" === model;
|
||||
}
|
||||
|
||||
export function getTimeoutMSByModel(model: string) {
|
||||
model = model.toLowerCase();
|
||||
if (
|
||||
model.startsWith("dall-e") ||
|
||||
model.startsWith("dalle") ||
|
||||
model.startsWith("o1") ||
|
||||
model.startsWith("o3") ||
|
||||
model.includes("deepseek-r") ||
|
||||
model.includes("-thinking")
|
||||
)
|
||||
return REQUEST_TIMEOUT_MS_FOR_THINKING;
|
||||
return REQUEST_TIMEOUT_MS;
|
||||
}
|
||||
|
||||
export function getModelSizes(model: string): ModelSize[] {
|
||||
if (isDalle3(model)) {
|
||||
return ["1024x1024", "1792x1024", "1024x1792"];
|
||||
|
|
|
@ -400,6 +400,7 @@ export function streamWithThink(
|
|||
let responseRes: Response;
|
||||
let isInThinkingMode = false;
|
||||
let lastIsThinking = false;
|
||||
let lastIsThinkingTagged = false; //between <think> and </think> tags
|
||||
|
||||
// animate response to make it looks smooth
|
||||
function animateResponseText() {
|
||||
|
@ -579,6 +580,23 @@ export function streamWithThink(
|
|||
if (!chunk?.content || chunk.content.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// deal with <think> and </think> tags start
|
||||
if (!chunk.isThinking) {
|
||||
if (chunk.content.startsWith("<think>")) {
|
||||
chunk.isThinking = true;
|
||||
chunk.content = chunk.content.slice(7).trim();
|
||||
lastIsThinkingTagged = true;
|
||||
} else if (chunk.content.endsWith("</think>")) {
|
||||
chunk.isThinking = false;
|
||||
chunk.content = chunk.content.slice(0, -8).trim();
|
||||
lastIsThinkingTagged = false;
|
||||
} else if (lastIsThinkingTagged) {
|
||||
chunk.isThinking = true;
|
||||
}
|
||||
}
|
||||
// deal with <think> and </think> tags start
|
||||
|
||||
// Check if thinking mode changed
|
||||
const isThinkingChanged = lastIsThinking !== chunk.isThinking;
|
||||
lastIsThinking = chunk.isThinking;
|
||||
|
|
Loading…
Reference in New Issue