Merge pull request #6204 from bestsanmao/ali_bytedance_reasoning_content

add 3 type of reasoning_content support (+deepseek-r1@OpenAI @Alibaba @ByteDance), parse <think></think> from SSE
This commit is contained in:
RiverRay 2025-02-13 14:53:47 +08:00 committed by GitHub
commit 12863f5213
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 316 additions and 292 deletions

View File

@ -1,12 +1,13 @@
"use client";
import { ApiPath, Alibaba, ALIBABA_BASE_URL } from "@/app/constant";
import {
ApiPath,
Alibaba,
ALIBABA_BASE_URL,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import { streamWithThink } from "@/app/utils/chat";
import {
ChatOptions,
getHeaders,
@ -15,14 +16,12 @@ import {
SpeechOptions,
MultimodalContent,
} from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import {
getMessageTextContent,
getMessageTextContentWithoutThinking,
getTimeoutMSByModel,
} from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
@ -92,7 +91,10 @@ export class QwenApi implements LLMApi {
async chat(options: ChatOptions) {
const messages = options.messages.map((v) => ({
role: v.role,
content: getMessageTextContent(v),
content:
v.role === "assistant"
? getMessageTextContentWithoutThinking(v)
: getMessageTextContent(v),
}));
const modelConfig = {
@ -122,134 +124,118 @@ export class QwenApi implements LLMApi {
options.onController?.(controller);
try {
const headers = {
...getHeaders(),
"X-DashScope-SSE": shouldStream ? "enable" : "disable",
};
const chatPath = this.path(Alibaba.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: {
...getHeaders(),
"X-DashScope-SSE": shouldStream ? "enable" : "disable",
},
headers: headers,
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
let responseRes: Response;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return streamWithThink(
chatPath,
requestPayload,
headers,
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.output.choices as Array<{
message: {
content: string | null;
tool_calls: ChatMessageTool[];
reasoning_content: string | null;
};
}>;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
}
return;
}
if (!choices?.length) return { isThinking: false, content: "" };
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText, responseRes);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
fetch: fetch as any,
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[Alibaba] request response content type: ",
contentType,
);
responseRes = res;
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
const tool_calls = choices[0]?.message?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
const reasoning = choices[0]?.message?.reasoning_content;
const content = choices[0]?.message?.content;
// Skip if both content and reasoning_content are empty or null
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
return {
isThinking: false,
content: "",
};
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.output.choices as Array<{
message: { content: string };
}>;
const delta = choices[0]?.message?.content;
if (delta) {
remainText += delta;
}
} catch (e) {
console.error("[Request] parse error", text, msg);
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.length > 0) {
return {
isThinking: false,
content: content,
};
}
return {
isThinking: false,
content: "",
};
},
onclose() {
finish();
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
requestPayload?.input?.messages?.splice(
requestPayload?.input?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);

View File

@ -1,10 +1,5 @@
"use client";
import {
ApiPath,
Baidu,
BAIDU_BASE_URL,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import { ApiPath, Baidu, BAIDU_BASE_URL } from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import { getAccessToken } from "@/app/utils/baidu";
@ -23,7 +18,7 @@ import {
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import { getMessageTextContent, getTimeoutMSByModel } from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
@ -155,7 +150,7 @@ export class ErnieApi implements LLMApi {
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {

View File

@ -1,11 +1,12 @@
"use client";
import { ApiPath, ByteDance, BYTEDANCE_BASE_URL } from "@/app/constant";
import {
ApiPath,
ByteDance,
BYTEDANCE_BASE_URL,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import {
ChatOptions,
@ -15,14 +16,14 @@ import {
MultimodalContent,
SpeechOptions,
} from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { streamWithThink } from "@/app/utils/chat";
import { getClientConfig } from "@/app/config/client";
import { preProcessImageContent } from "@/app/utils/chat";
import {
getMessageTextContentWithoutThinking,
getTimeoutMSByModel,
} from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
@ -34,7 +35,7 @@ export interface OpenAIListModelResponse {
}>;
}
interface RequestPayload {
interface RequestPayloadForByteDance {
messages: {
role: "system" | "user" | "assistant";
content: string | MultimodalContent[];
@ -86,7 +87,10 @@ export class DoubaoApi implements LLMApi {
async chat(options: ChatOptions) {
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = await preProcessImageContent(v.content);
const content =
v.role === "assistant"
? getMessageTextContentWithoutThinking(v)
: await preProcessImageContent(v.content);
messages.push({ role: v.role, content });
}
@ -99,7 +103,7 @@ export class DoubaoApi implements LLMApi {
};
const shouldStream = !!options.config.stream;
const requestPayload: RequestPayload = {
const requestPayload: RequestPayloadForByteDance = {
messages,
stream: shouldStream,
model: modelConfig.model,
@ -124,119 +128,101 @@ export class DoubaoApi implements LLMApi {
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
let responseRes: Response;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return streamWithThink(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string | null;
tool_calls: ChatMessageTool[];
reasoning_content: string | null;
};
}>;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
}
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText, responseRes);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
fetch: fetch as any,
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[ByteDance] request response content type: ",
contentType,
);
responseRes = res;
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
if (!choices?.length) return { isThinking: false, content: "" };
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
const reasoning = choices[0]?.delta?.reasoning_content;
const content = choices[0]?.delta?.content;
// Skip if both content and reasoning_content are empty or null
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
return {
isThinking: false,
content: "",
};
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
if (delta) {
remainText += delta;
}
} catch (e) {
console.error("[Request] parse error", text, msg);
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.length > 0) {
return {
isThinking: false,
content: content,
};
}
return {
isThinking: false,
content: "",
};
},
onclose() {
finish();
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayloadForByteDance,
toolCallMessage: any,
toolCallResult: any[],
) => {
requestPayload?.messages?.splice(
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);

View File

@ -1,12 +1,6 @@
"use client";
// azure and openai, using same models. so using same LLMApi.
import {
ApiPath,
DEEPSEEK_BASE_URL,
DeepSeek,
REQUEST_TIMEOUT_MS,
REQUEST_TIMEOUT_MS_FOR_THINKING,
} from "@/app/constant";
import { ApiPath, DEEPSEEK_BASE_URL, DeepSeek } from "@/app/constant";
import {
useAccessStore,
useAppConfig,
@ -26,6 +20,7 @@ import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
getMessageTextContentWithoutThinking,
getTimeoutMSByModel,
} from "@/app/utils";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
@ -116,16 +111,10 @@ export class DeepSeekApi implements LLMApi {
headers: getHeaders(),
};
// console.log(chatPayload);
const isR1 =
options.config.model.endsWith("-reasoner") ||
options.config.model.endsWith("-r1");
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isR1 ? REQUEST_TIMEOUT_MS_FOR_THINKING : REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {
@ -176,8 +165,8 @@ export class DeepSeekApi implements LLMApi {
// Skip if both content and reasoning_content are empty or null
if (
(!reasoning || reasoning.trim().length === 0) &&
(!content || content.trim().length === 0)
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
return {
isThinking: false,
@ -185,12 +174,12 @@ export class DeepSeekApi implements LLMApi {
};
}
if (reasoning && reasoning.trim().length > 0) {
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.trim().length > 0) {
} else if (content && content.length > 0) {
return {
isThinking: false,
content: content,

View File

@ -1,10 +1,5 @@
"use client";
import {
ApiPath,
CHATGLM_BASE_URL,
ChatGLM,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import { ApiPath, CHATGLM_BASE_URL, ChatGLM } from "@/app/constant";
import {
useAccessStore,
useAppConfig,
@ -21,7 +16,11 @@ import {
SpeechOptions,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent, isVisionModel } from "@/app/utils";
import {
getMessageTextContent,
isVisionModel,
getTimeoutMSByModel,
} from "@/app/utils";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
import { preProcessImageContent } from "@/app/utils/chat";
@ -191,7 +190,7 @@ export class ChatGLMApi implements LLMApi {
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (modelType === "image" || modelType === "video") {

View File

@ -1,9 +1,4 @@
import {
ApiPath,
Google,
REQUEST_TIMEOUT_MS,
REQUEST_TIMEOUT_MS_FOR_THINKING,
} from "@/app/constant";
import { ApiPath, Google } from "@/app/constant";
import {
ChatOptions,
getHeaders,
@ -27,6 +22,7 @@ import {
getMessageTextContent,
getMessageImages,
isVisionModel,
getTimeoutMSByModel,
} from "@/app/utils";
import { preProcessImageContent } from "@/app/utils/chat";
import { nanoid } from "nanoid";
@ -206,7 +202,7 @@ export class GeminiProApi implements LLMApi {
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isThinking ? REQUEST_TIMEOUT_MS_FOR_THINKING : REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {

View File

@ -8,7 +8,6 @@ import {
Azure,
REQUEST_TIMEOUT_MS,
ServiceProvider,
REQUEST_TIMEOUT_MS_FOR_THINKING,
} from "@/app/constant";
import {
ChatMessageTool,
@ -22,7 +21,7 @@ import {
preProcessImageContent,
uploadImage,
base64Image2Blob,
stream,
streamWithThink,
} from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { ModelSize, DalleQuality, DalleStyle } from "@/app/typing";
@ -42,6 +41,7 @@ import {
getMessageTextContent,
isVisionModel,
isDalle3 as _isDalle3,
getTimeoutMSByModel,
} from "@/app/utils";
import { fetch } from "@/app/utils/stream";
@ -294,7 +294,7 @@ export class ChatGPTApi implements LLMApi {
useChatStore.getState().currentSession().mask?.plugin || [],
);
// console.log("getAsTools", tools, funcs);
stream(
streamWithThink(
chatPath,
requestPayload,
getHeaders(),
@ -309,8 +309,12 @@ export class ChatGPTApi implements LLMApi {
delta: {
content: string;
tool_calls: ChatMessageTool[];
reasoning_content: string | null;
};
}>;
if (!choices?.length) return { isThinking: false, content: "" };
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const id = tool_calls[0]?.id;
@ -330,7 +334,37 @@ export class ChatGPTApi implements LLMApi {
runTools[index]["function"]["arguments"] += args;
}
}
return choices[0]?.delta?.content;
const reasoning = choices[0]?.delta?.reasoning_content;
const content = choices[0]?.delta?.content;
// Skip if both content and reasoning_content are empty or null
if (
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
return {
isThinking: false,
content: "",
};
}
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.length > 0) {
return {
isThinking: false,
content: content,
};
}
return {
isThinking: false,
content: "",
};
},
// processToolMessage, include tool_calls message and tool call results
(
@ -362,9 +396,7 @@ export class ChatGPTApi implements LLMApi {
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isDalle3 || isO1OrO3
? REQUEST_TIMEOUT_MS_FOR_THINKING
: REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
getTimeoutMSByModel(options.config.model),
);
const res = await fetch(chatPath, chatPayload);

View File

@ -4,7 +4,6 @@ import {
ApiPath,
SILICONFLOW_BASE_URL,
SiliconFlow,
REQUEST_TIMEOUT_MS_FOR_THINKING,
DEFAULT_MODELS,
} from "@/app/constant";
import {
@ -27,6 +26,7 @@ import {
getMessageTextContent,
getMessageTextContentWithoutThinking,
isVisionModel,
getTimeoutMSByModel,
} from "@/app/utils";
import { RequestPayload } from "./openai";
@ -137,7 +137,7 @@ export class SiliconflowApi implements LLMApi {
// Use extended timeout for thinking models as they typically require more processing time
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS_FOR_THINKING,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {

View File

@ -1,5 +1,5 @@
"use client";
import { ApiPath, TENCENT_BASE_URL, REQUEST_TIMEOUT_MS } from "@/app/constant";
import { ApiPath, TENCENT_BASE_URL } from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
@ -17,7 +17,11 @@ import {
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent, isVisionModel } from "@/app/utils";
import {
getMessageTextContent,
isVisionModel,
getTimeoutMSByModel,
} from "@/app/utils";
import mapKeys from "lodash-es/mapKeys";
import mapValues from "lodash-es/mapValues";
import isArray from "lodash-es/isArray";
@ -135,7 +139,7 @@ export class HunyuanApi implements LLMApi {
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {

View File

@ -1,6 +1,6 @@
"use client";
// azure and openai, using same models. so using same LLMApi.
import { ApiPath, XAI_BASE_URL, XAI, REQUEST_TIMEOUT_MS } from "@/app/constant";
import { ApiPath, XAI_BASE_URL, XAI } from "@/app/constant";
import {
useAccessStore,
useAppConfig,
@ -17,6 +17,7 @@ import {
SpeechOptions,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import { getTimeoutMSByModel } from "@/app/utils";
import { preProcessImageContent } from "@/app/utils/chat";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
@ -103,7 +104,7 @@ export class XAIApi implements LLMApi {
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {

View File

@ -2,7 +2,11 @@ import { useEffect, useState } from "react";
import { showToast } from "./components/ui-lib";
import Locale from "./locales";
import { RequestMessage } from "./client/api";
import { ServiceProvider } from "./constant";
import {
REQUEST_TIMEOUT_MS,
REQUEST_TIMEOUT_MS_FOR_THINKING,
ServiceProvider,
} from "./constant";
// import { fetch as tauriFetch, ResponseType } from "@tauri-apps/api/http";
import { fetch as tauriStreamFetch } from "./utils/stream";
import { VISION_MODEL_REGEXES, EXCLUDE_VISION_MODEL_REGEXES } from "./constant";
@ -292,6 +296,20 @@ export function isDalle3(model: string) {
return "dall-e-3" === model;
}
export function getTimeoutMSByModel(model: string) {
model = model.toLowerCase();
if (
model.startsWith("dall-e") ||
model.startsWith("dalle") ||
model.startsWith("o1") ||
model.startsWith("o3") ||
model.includes("deepseek-r") ||
model.includes("-thinking")
)
return REQUEST_TIMEOUT_MS_FOR_THINKING;
return REQUEST_TIMEOUT_MS;
}
export function getModelSizes(model: string): ModelSize[] {
if (isDalle3(model)) {
return ["1024x1024", "1792x1024", "1024x1792"];

View File

@ -400,6 +400,7 @@ export function streamWithThink(
let responseRes: Response;
let isInThinkingMode = false;
let lastIsThinking = false;
let lastIsThinkingTagged = false; //between <think> and </think> tags
// animate response to make it looks smooth
function animateResponseText() {
@ -579,6 +580,23 @@ export function streamWithThink(
if (!chunk?.content || chunk.content.length === 0) {
return;
}
// deal with <think> and </think> tags start
if (!chunk.isThinking) {
if (chunk.content.startsWith("<think>")) {
chunk.isThinking = true;
chunk.content = chunk.content.slice(7).trim();
lastIsThinkingTagged = true;
} else if (chunk.content.endsWith("</think>")) {
chunk.isThinking = false;
chunk.content = chunk.content.slice(0, -8).trim();
lastIsThinkingTagged = false;
} else if (lastIsThinkingTagged) {
chunk.isThinking = true;
}
}
// deal with <think> and </think> tags start
// Check if thinking mode changed
const isThinkingChanged = lastIsThinking !== chunk.isThinking;
lastIsThinking = chunk.isThinking;