1457 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Lua
		
	
	
	
	
	
			
		
		
	
	
			1457 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			Lua
		
	
	
	
	
	
--[[
 | 
						|
Copyright (c) 2016, Vsevolod Stakhov <vsevolod@highsecure.ru>
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License.
 | 
						|
]]--
 | 
						|
 | 
						|
 | 
						|
if confighelp then
 | 
						|
  return
 | 
						|
end
 | 
						|
 | 
						|
local rspamd_logger = require "rspamd_logger"
 | 
						|
local rspamd_util = require "rspamd_util"
 | 
						|
local rspamd_kann = require "rspamd_kann"
 | 
						|
local lua_redis = require "lua_redis"
 | 
						|
local lua_util = require "lua_util"
 | 
						|
local fun = require "fun"
 | 
						|
local lua_settings = require "lua_settings"
 | 
						|
local meta_functions = require "lua_meta"
 | 
						|
local ts = require("tableshape").types
 | 
						|
local lua_verdict = require "lua_verdict"
 | 
						|
local N = "neural"
 | 
						|
 | 
						|
-- Module vars
 | 
						|
local default_options = {
 | 
						|
  train = {
 | 
						|
    max_trains = 1000,
 | 
						|
    max_epoch = 1000,
 | 
						|
    max_usages = 10,
 | 
						|
    max_iterations = 25, -- Torch style
 | 
						|
    mse = 0.001,
 | 
						|
    autotrain = true,
 | 
						|
    train_prob = 1.0,
 | 
						|
    learn_threads = 1,
 | 
						|
    learning_rate = 0.01,
 | 
						|
  },
 | 
						|
  watch_interval = 60.0,
 | 
						|
  lock_expire = 600,
 | 
						|
  learning_spawned = false,
 | 
						|
  ann_expire = 60 * 60 * 24 * 2, -- 2 days
 | 
						|
  symbol_spam = 'NEURAL_SPAM',
 | 
						|
  symbol_ham = 'NEURAL_HAM',
 | 
						|
}
 | 
						|
 | 
						|
local redis_profile_schema = ts.shape{
 | 
						|
  digest = ts.string,
 | 
						|
  symbols = ts.array_of(ts.string),
 | 
						|
  version = ts.number,
 | 
						|
  redis_key = ts.string,
 | 
						|
  distance = ts.number:is_optional(),
 | 
						|
}
 | 
						|
 | 
						|
-- Rule structure:
 | 
						|
-- * static config fields (see `default_options`)
 | 
						|
-- * prefix - name or defined prefix
 | 
						|
-- * settings - table of settings indexed by settings id, -1 is used when no settings defined
 | 
						|
 | 
						|
-- Rule settings element defines elements for specific settings id:
 | 
						|
-- * symbols - static symbols profile (defined by config or extracted from symcache)
 | 
						|
-- * name - name of settings id
 | 
						|
-- * digest - digest of all symbols
 | 
						|
-- * ann - dynamic ANN configuration loaded from Redis
 | 
						|
-- * train - train data for ANN (e.g. the currently trained ANN)
 | 
						|
 | 
						|
-- Settings ANN table is loaded from Redis and represents dynamic profile for ANN
 | 
						|
-- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically
 | 
						|
-- * version - version of ANN loaded from redis
 | 
						|
-- * redis_key - name of ANN key in Redis
 | 
						|
-- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols)
 | 
						|
-- * distance - distance between set.symbols and set.ann.symbols
 | 
						|
-- * ann - kann object
 | 
						|
 | 
						|
local settings = {
 | 
						|
  rules = {},
 | 
						|
  prefix = 'rn', -- Neural network default prefix
 | 
						|
  max_profiles = 3, -- Maximum number of NN profiles stored
 | 
						|
}
 | 
						|
 | 
						|
local module_config = rspamd_config:get_all_opt("neural")
 | 
						|
if not module_config then
 | 
						|
  -- Legacy
 | 
						|
  module_config = rspamd_config:get_all_opt("fann_redis")
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
-- Lua script that checks if we can store a new training vector
 | 
						|
-- Uses the following keys:
 | 
						|
-- key1 - ann key
 | 
						|
-- key2 - spam or ham
 | 
						|
-- key3 - maximum trains
 | 
						|
-- key4 - sampling coin (as Redis scripts do not allow math.random calls)
 | 
						|
-- returns 1 or 0 + reason: 1 - allow learn, 0 - not allow learn
 | 
						|
local redis_lua_script_can_store_train_vec = [[
 | 
						|
  local prefix = KEYS[1]
 | 
						|
  local locked = redis.call('HGET', prefix, 'lock')
 | 
						|
  if locked then return {tostring(-1),'locked by another process till: ' .. locked} end
 | 
						|
  local nspam = 0
 | 
						|
  local nham = 0
 | 
						|
  local lim = tonumber(KEYS[3])
 | 
						|
  local coin = tonumber(KEYS[4])
 | 
						|
 | 
						|
  local ret = redis.call('LLEN', prefix .. '_spam')
 | 
						|
  if ret then nspam = tonumber(ret) end
 | 
						|
  ret = redis.call('LLEN', prefix .. '_ham')
 | 
						|
  if ret then nham = tonumber(ret) end
 | 
						|
 | 
						|
  if KEYS[2] == 'spam' then
 | 
						|
    if nspam <= lim then
 | 
						|
      if nspam > nham then
 | 
						|
        -- Apply sampling
 | 
						|
        local skip_rate = 1.0 - nham / (nspam + 1)
 | 
						|
        if coin < skip_rate then
 | 
						|
          return {tostring(-(nspam)),'sampled out with probability ' .. tostring(skip_rate)}
 | 
						|
        end
 | 
						|
      end
 | 
						|
      return {tostring(nspam),'can learn'}
 | 
						|
    else -- Enough learns
 | 
						|
      return {tostring(-(nspam)),'too many spam samples'}
 | 
						|
    end
 | 
						|
  else
 | 
						|
    if nham <= lim then
 | 
						|
      if nham > nspam then
 | 
						|
        -- Apply sampling
 | 
						|
        local skip_rate = 1.0 - nspam / (nham + 1)
 | 
						|
        if coin < skip_rate then
 | 
						|
          return {tostring(-(nham)),'sampled out with probability ' .. tostring(skip_rate)}
 | 
						|
        end
 | 
						|
      end
 | 
						|
      return {tostring(nham),'can learn'}
 | 
						|
    else
 | 
						|
      return {tostring(-(nham)),'too many ham samples'}
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  return {tostring(-1),'bad input'}
 | 
						|
]]
 | 
						|
local redis_can_store_train_vec_id = nil
 | 
						|
 | 
						|
-- Lua script to invalidate ANNs by rank
 | 
						|
-- Uses the following keys
 | 
						|
-- key1 - prefix for keys
 | 
						|
-- key2 - number of elements to leave
 | 
						|
local redis_lua_script_maybe_invalidate = [[
 | 
						|
  local card = redis.call('ZCARD', KEYS[1])
 | 
						|
  local lim = tonumber(KEYS[2])
 | 
						|
  if card > lim then
 | 
						|
    local to_delete = redis.call('ZRANGE', KEYS[1], 0, card - lim - 1)
 | 
						|
    for _,k in ipairs(to_delete) do
 | 
						|
      local tb = cjson.decode(k)
 | 
						|
      redis.call('DEL', tb.redis_key)
 | 
						|
      -- Also train vectors
 | 
						|
      redis.call('DEL', tb.redis_key .. '_spam')
 | 
						|
      redis.call('DEL', tb.redis_key .. '_ham')
 | 
						|
    end
 | 
						|
    redis.call('ZREMRANGEBYRANK', KEYS[1], 0, card - lim - 1)
 | 
						|
    return to_delete
 | 
						|
  else
 | 
						|
    return {}
 | 
						|
  end
 | 
						|
]]
 | 
						|
local redis_maybe_invalidate_id = nil
 | 
						|
 | 
						|
-- Lua script to invalidate ANN from redis
 | 
						|
-- Uses the following keys
 | 
						|
-- key1 - prefix for keys
 | 
						|
-- key2 - current time
 | 
						|
-- key3 - key expire
 | 
						|
-- key4 - hostname
 | 
						|
local redis_lua_script_maybe_lock = [[
 | 
						|
  local locked = redis.call('HGET', KEYS[1], 'lock')
 | 
						|
  local now = tonumber(KEYS[2])
 | 
						|
  if locked then
 | 
						|
    locked = tonumber(locked)
 | 
						|
    local expire = tonumber(KEYS[3])
 | 
						|
    if now > locked and (now - locked) < expire then
 | 
						|
      return {tostring(locked), redis.call('HGET', KEYS[1], 'hostname')}
 | 
						|
    end
 | 
						|
  end
 | 
						|
  redis.call('HSET', KEYS[1], 'lock', tostring(now))
 | 
						|
  redis.call('HSET', KEYS[1], 'hostname', KEYS[4])
 | 
						|
  return 1
 | 
						|
]]
 | 
						|
local redis_maybe_lock_id = nil
 | 
						|
 | 
						|
-- Lua script to save and unlock ANN in redis
 | 
						|
-- Uses the following keys
 | 
						|
-- key1 - prefix for ANN
 | 
						|
-- key2 - prefix for profile
 | 
						|
-- key3 - compressed ANN
 | 
						|
-- key4 - profile as JSON
 | 
						|
-- key5 - expire in seconds
 | 
						|
-- key6 - current time
 | 
						|
-- key7 - old key
 | 
						|
local redis_lua_script_save_unlock = [[
 | 
						|
  local now = tonumber(KEYS[6])
 | 
						|
  redis.call('ZADD', KEYS[2], now, KEYS[4])
 | 
						|
  redis.call('HSET', KEYS[1], 'ann', KEYS[3])
 | 
						|
  redis.call('DEL', KEYS[1] .. '_spam')
 | 
						|
  redis.call('DEL', KEYS[1] .. '_ham')
 | 
						|
  redis.call('HDEL', KEYS[1], 'lock')
 | 
						|
  redis.call('HDEL', KEYS[7], 'lock')
 | 
						|
  redis.call('EXPIRE', KEYS[1], tonumber(KEYS[5]))
 | 
						|
  return 1
 | 
						|
]]
 | 
						|
local redis_save_unlock_id = nil
 | 
						|
 | 
						|
local redis_params
 | 
						|
 | 
						|
local function load_scripts(params)
 | 
						|
  redis_can_store_train_vec_id = lua_redis.add_redis_script(redis_lua_script_can_store_train_vec,
 | 
						|
    params)
 | 
						|
  redis_maybe_invalidate_id = lua_redis.add_redis_script(redis_lua_script_maybe_invalidate,
 | 
						|
    params)
 | 
						|
  redis_maybe_lock_id = lua_redis.add_redis_script(redis_lua_script_maybe_lock,
 | 
						|
    params)
 | 
						|
  redis_save_unlock_id = lua_redis.add_redis_script(redis_lua_script_save_unlock,
 | 
						|
    params)
 | 
						|
end
 | 
						|
 | 
						|
local function result_to_vector(task, profile)
 | 
						|
  if not profile.zeros then
 | 
						|
    -- Fill zeros vector
 | 
						|
    local zeros = {}
 | 
						|
    for i=1,meta_functions.count_metatokens() do
 | 
						|
      zeros[i] = 0.0
 | 
						|
    end
 | 
						|
    for _,_ in ipairs(profile.symbols) do
 | 
						|
      zeros[#zeros + 1] = 0.0
 | 
						|
    end
 | 
						|
    profile.zeros = zeros
 | 
						|
  end
 | 
						|
 | 
						|
  local vec = lua_util.shallowcopy(profile.zeros)
 | 
						|
  local mt = meta_functions.rspamd_gen_metatokens(task)
 | 
						|
 | 
						|
  for i,v in ipairs(mt) do
 | 
						|
    vec[i] = v
 | 
						|
  end
 | 
						|
 | 
						|
  task:process_ann_tokens(profile.symbols, vec, #mt, 0.1)
 | 
						|
 | 
						|
  return vec
 | 
						|
end
 | 
						|
 | 
						|
-- Used to generate new ANN key for specific profile
 | 
						|
local function new_ann_key(rule, set, version)
 | 
						|
  local ann_key = string.format('%s_%s_%s_%s_%s', settings.prefix,
 | 
						|
      rule.prefix, set.name, set.digest:sub(1, 8), tostring(version))
 | 
						|
 | 
						|
  return ann_key
 | 
						|
end
 | 
						|
 | 
						|
-- Extract settings element for a specific settings id
 | 
						|
local function get_rule_settings(task, rule)
 | 
						|
  local sid = task:get_settings_id() or -1
 | 
						|
 | 
						|
  local set = rule.settings[sid]
 | 
						|
 | 
						|
  if not set then return nil end
 | 
						|
 | 
						|
  while type(set) == 'number' do
 | 
						|
    -- Reference to another settings!
 | 
						|
    set = rule.settings[set]
 | 
						|
  end
 | 
						|
 | 
						|
  return set
 | 
						|
end
 | 
						|
 | 
						|
-- Generate redis prefix for specific rule and specific settings
 | 
						|
local function redis_ann_prefix(rule, settings_name)
 | 
						|
  -- We also need to count metatokens:
 | 
						|
  local n = meta_functions.version
 | 
						|
  return string.format('%s_%s_%d_%s',
 | 
						|
      settings.prefix, rule.prefix, n, settings_name)
 | 
						|
end
 | 
						|
 | 
						|
-- Creates and stores ANN profile in Redis
 | 
						|
local function new_ann_profile(task, rule, set, version)
 | 
						|
  local ann_key = new_ann_key(rule, set, version)
 | 
						|
 | 
						|
  local profile = {
 | 
						|
    symbols = set.symbols,
 | 
						|
    redis_key = ann_key,
 | 
						|
    version = version,
 | 
						|
    digest = set.digest,
 | 
						|
    distance = 0 -- Since we are using our own profile
 | 
						|
  }
 | 
						|
 | 
						|
  local ucl = require "ucl"
 | 
						|
  local profile_serialized = ucl.to_format(profile, 'json-compact', true)
 | 
						|
 | 
						|
  local function add_cb(err, _)
 | 
						|
    if err then
 | 
						|
      rspamd_logger.errx(task, 'cannot store ANN profile for %s:%s at %s : %s',
 | 
						|
          rule.prefix, set.name, profile.redis_key, err)
 | 
						|
    else
 | 
						|
      rspamd_logger.infox(task, 'created new ANN profile for %s:%s, data stored at prefix %s',
 | 
						|
          rule.prefix, set.name, profile.redis_key)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  lua_redis.redis_make_request(task,
 | 
						|
      rule.redis,
 | 
						|
      nil,
 | 
						|
      true, -- is write
 | 
						|
      add_cb, --callback
 | 
						|
      'ZADD', -- command
 | 
						|
      {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
 | 
						|
  )
 | 
						|
 | 
						|
  return profile
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
-- ANN filter function, used to insert scores based on the existing symbols
 | 
						|
local function ann_scores_filter(task)
 | 
						|
 | 
						|
  for _,rule in pairs(settings.rules) do
 | 
						|
    local sid = task:get_settings_id() or -1
 | 
						|
    local ann
 | 
						|
    local profile
 | 
						|
 | 
						|
    local set = get_rule_settings(task, rule)
 | 
						|
    if set then
 | 
						|
      if set.ann then
 | 
						|
        ann = set.ann.ann
 | 
						|
        profile = set.ann
 | 
						|
      else
 | 
						|
        lua_util.debugm(N, task, 'no ann loaded for %s:%s',
 | 
						|
            rule.prefix, set.name)
 | 
						|
      end
 | 
						|
    else
 | 
						|
      lua_util.debugm(N, task, 'no ann defined in %s for settings id %s',
 | 
						|
          rule.prefix, sid)
 | 
						|
    end
 | 
						|
 | 
						|
    if ann then
 | 
						|
      local vec = result_to_vector(task, profile)
 | 
						|
 | 
						|
      local score
 | 
						|
      local out = ann:apply1(vec)
 | 
						|
      score = out[1]
 | 
						|
 | 
						|
      local symscore = string.format('%.3f', score)
 | 
						|
      lua_util.debugm(N, task, '%s:%s:%s ann score: %s',
 | 
						|
          rule.prefix, set.name, set.ann.version, symscore)
 | 
						|
 | 
						|
      if score > 0 then
 | 
						|
        local result = score
 | 
						|
        task:insert_result(rule.symbol_spam, result, symscore)
 | 
						|
      else
 | 
						|
        local result = -(score)
 | 
						|
        task:insert_result(rule.symbol_ham, result, symscore)
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
local function create_ann(n, nlayers)
 | 
						|
    -- We ignore number of layers so far when using kann
 | 
						|
  local nhidden = math.floor((n + 1) / 2)
 | 
						|
  local t = rspamd_kann.layer.input(n)
 | 
						|
  t = rspamd_kann.transform.relu(t)
 | 
						|
  t = rspamd_kann.transform.tanh(rspamd_kann.layer.dense(t, nhidden));
 | 
						|
  t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.mse)
 | 
						|
  return rspamd_kann.new.kann(t)
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
local function ann_push_task_result(rule, task, verdict, score, set)
 | 
						|
  local train_opts = rule.train
 | 
						|
  local learn_spam, learn_ham
 | 
						|
  local skip_reason = 'unknown'
 | 
						|
 | 
						|
  if train_opts.autotrain then
 | 
						|
    if train_opts.spam_score then
 | 
						|
      learn_spam = score >= train_opts.spam_score
 | 
						|
 | 
						|
      if not learn_spam then
 | 
						|
        skip_reason = string.format('score < spam_score: %f < %f',
 | 
						|
            score, train_opts.spam_score)
 | 
						|
      end
 | 
						|
    else
 | 
						|
      learn_spam = verdict == 'spam' or verdict == 'junk'
 | 
						|
 | 
						|
      if not learn_spam then
 | 
						|
        skip_reason = string.format('verdict: %s',
 | 
						|
            verdict)
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    if train_opts.ham_score then
 | 
						|
      learn_ham = score <= train_opts.ham_score
 | 
						|
      if not learn_ham then
 | 
						|
        skip_reason = string.format('score > ham_score: %f > %f',
 | 
						|
            score, train_opts.ham_score)
 | 
						|
      end
 | 
						|
    else
 | 
						|
      learn_ham = verdict == 'ham'
 | 
						|
 | 
						|
      if not learn_ham then
 | 
						|
        skip_reason = string.format('verdict: %s',
 | 
						|
            verdict)
 | 
						|
      end
 | 
						|
    end
 | 
						|
  else
 | 
						|
    -- Train by request header
 | 
						|
    local hdr = task:get_request_header('ANN-Train')
 | 
						|
 | 
						|
    if hdr then
 | 
						|
      if hdr:lower() == 'spam' then
 | 
						|
        learn_spam = true
 | 
						|
      elseif hdr:lower() == 'ham' then
 | 
						|
        learn_ham = true
 | 
						|
      else
 | 
						|
        skip_reason = string.format('no explicit header')
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
 | 
						|
  if learn_spam or learn_ham then
 | 
						|
    local learn_type
 | 
						|
    if learn_spam then learn_type = 'spam' else learn_type = 'ham' end
 | 
						|
 | 
						|
    local function can_train_cb(err, data)
 | 
						|
      if not err and type(data) == 'table' then
 | 
						|
        local nsamples,reason = tonumber(data[1]),data[2]
 | 
						|
 | 
						|
        if nsamples >= 0 then
 | 
						|
          local coin = math.random()
 | 
						|
 | 
						|
          if coin < 1.0 - train_opts.train_prob then
 | 
						|
            rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin)
 | 
						|
            return
 | 
						|
          end
 | 
						|
 | 
						|
          local vec = result_to_vector(task, set)
 | 
						|
 | 
						|
          local str = rspamd_util.zstd_compress(table.concat(vec, ';'))
 | 
						|
          local target_key = set.ann.redis_key .. '_' .. learn_type
 | 
						|
 | 
						|
          local function learn_vec_cb(_err)
 | 
						|
            if _err then
 | 
						|
              rspamd_logger.errx(task, 'cannot store train vector for %s:%s: %s',
 | 
						|
                  rule.prefix, set.name, _err)
 | 
						|
            else
 | 
						|
              lua_util.debugm(N, task,
 | 
						|
                  "add train data for ANN rule " ..
 | 
						|
                      "%s:%s, save %s vector of %s elts in %s key; %s bytes compressed",
 | 
						|
                  rule.prefix, set.name, learn_type, #vec, target_key, #str)
 | 
						|
            end
 | 
						|
          end
 | 
						|
 | 
						|
          lua_redis.redis_make_request(task,
 | 
						|
              rule.redis,
 | 
						|
              nil,
 | 
						|
              true, -- is write
 | 
						|
              learn_vec_cb, --callback
 | 
						|
              'LPUSH', -- command
 | 
						|
              { target_key, str } -- arguments
 | 
						|
          )
 | 
						|
        else
 | 
						|
          -- Negative result returned
 | 
						|
          rspamd_logger.infox(task, "cannot learn %s ANN %s:%s; redis_key: %s: %s (%s vectors stored)",
 | 
						|
              learn_type, rule.prefix, set.name, set.ann.redis_key, reason, -tonumber(nsamples))
 | 
						|
        end
 | 
						|
      else
 | 
						|
        if err then
 | 
						|
          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : %s',
 | 
						|
              rule.prefix, set.name, err)
 | 
						|
        else
 | 
						|
          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : type of Redis key %s is %s, expected table' ..
 | 
						|
              'please remove this key from Redis manually if you perform upgrade from the previous version',
 | 
						|
              rule.prefix, set.name, set.ann.redis_key, type(data))
 | 
						|
        end
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    -- Check if we can learn
 | 
						|
    if set.can_store_vectors then
 | 
						|
      if not set.ann then
 | 
						|
        -- Need to create or load a profile corresponding to the current configuration
 | 
						|
        set.ann = new_ann_profile(task, rule, set, 0)
 | 
						|
        lua_util.debugm(N, task,
 | 
						|
            'requested new profile for %s, set.ann is missing',
 | 
						|
            set.name)
 | 
						|
      end
 | 
						|
 | 
						|
      lua_redis.exec_redis_script(redis_can_store_train_vec_id,
 | 
						|
          {task = task, is_write = true},
 | 
						|
          can_train_cb,
 | 
						|
          {
 | 
						|
            set.ann.redis_key,
 | 
						|
            learn_type,
 | 
						|
            tostring(train_opts.max_trains),
 | 
						|
            tostring(math.random()),
 | 
						|
          })
 | 
						|
    else
 | 
						|
      lua_util.debugm(N, task,
 | 
						|
          'do not push data: train condition not satisfied; reason: not checked existing ANNs')
 | 
						|
    end
 | 
						|
  else
 | 
						|
    lua_util.debugm(N, task,
 | 
						|
        'do not push data to key %s: train condition not satisfied; reason: %s',
 | 
						|
        (set.ann or {}).redis_key,
 | 
						|
        skip_reason)
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
--- Offline training logic
 | 
						|
 | 
						|
-- Closure generator for unlock function
 | 
						|
local function gen_unlock_cb(rule, set, ann_key)
 | 
						|
  return function (err)
 | 
						|
    if err then
 | 
						|
      rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s',
 | 
						|
          rule.prefix, set.name, ann_key, err)
 | 
						|
    else
 | 
						|
      lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s',
 | 
						|
          rule.prefix, set.name, ann_key)
 | 
						|
    end
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
-- This function is intended to extend lock for ANN during training
 | 
						|
-- It registers periodic that increases locked key each 30 seconds unless
 | 
						|
-- `set.learning_spawned` is set to `true`
 | 
						|
local function register_lock_extender(rule, set, ev_base, ann_key)
 | 
						|
  rspamd_config:add_periodic(ev_base, 30.0,
 | 
						|
      function()
 | 
						|
        local function redis_lock_extend_cb(_err, _)
 | 
						|
          if _err then
 | 
						|
            rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s',
 | 
						|
                ann_key, _err)
 | 
						|
          else
 | 
						|
            rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds',
 | 
						|
                ann_key)
 | 
						|
          end
 | 
						|
        end
 | 
						|
 | 
						|
        if set.learning_spawned then
 | 
						|
          lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
              rspamd_config,
 | 
						|
              rule.redis,
 | 
						|
              nil,
 | 
						|
              true, -- is write
 | 
						|
              redis_lock_extend_cb, --callback
 | 
						|
              'HINCRBY', -- command
 | 
						|
              {ann_key, 'lock', '30'}
 | 
						|
          )
 | 
						|
        else
 | 
						|
          lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false")
 | 
						|
          return false -- do not plan any more updates
 | 
						|
        end
 | 
						|
 | 
						|
        return true
 | 
						|
      end
 | 
						|
  )
 | 
						|
end
 | 
						|
 | 
						|
-- This function receives training vectors, checks them, spawn learning and saves ANN in Redis
 | 
						|
local function spawn_train(worker, ev_base, rule, set, ann_key, ham_vec, spam_vec)
 | 
						|
  -- Check training data sanity
 | 
						|
  -- Now we need to join inputs and create the appropriate test vectors
 | 
						|
  local n = #set.symbols +
 | 
						|
      meta_functions.rspamd_count_metatokens()
 | 
						|
 | 
						|
  -- Now we can train ann
 | 
						|
  local train_ann = create_ann(n, 3)
 | 
						|
 | 
						|
  if #ham_vec + #spam_vec < rule.train.max_trains / 2 then
 | 
						|
    -- Invalidate ANN as it is definitely invalid
 | 
						|
    -- TODO: add invalidation
 | 
						|
    assert(false)
 | 
						|
  else
 | 
						|
    local inputs, outputs = {}, {}
 | 
						|
 | 
						|
    -- Used to show sparsed vectors in a convenient format (for debugging only)
 | 
						|
    local function debug_vec(t)
 | 
						|
      local ret = {}
 | 
						|
      for i,v in ipairs(t) do
 | 
						|
        if v ~= 0 then
 | 
						|
          ret[#ret + 1] = string.format('%d=%.2f', i, v)
 | 
						|
        end
 | 
						|
      end
 | 
						|
 | 
						|
      return ret
 | 
						|
    end
 | 
						|
 | 
						|
    -- Make training set by joining vectors
 | 
						|
    -- KANN automatically shuffles those samples
 | 
						|
    -- 1.0 is used for spam and -1.0 is used for ham
 | 
						|
    -- It implies that output layer can express that (e.g. tanh output)
 | 
						|
    for _,e in ipairs(spam_vec) do
 | 
						|
      inputs[#inputs + 1] = e
 | 
						|
      outputs[#outputs + 1] = {1.0}
 | 
						|
      --rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e))
 | 
						|
    end
 | 
						|
    for _,e in ipairs(ham_vec) do
 | 
						|
      inputs[#inputs + 1] = e
 | 
						|
      outputs[#outputs + 1] = {-1.0}
 | 
						|
      --rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e))
 | 
						|
    end
 | 
						|
 | 
						|
    -- Called in child process
 | 
						|
    local function train()
 | 
						|
      local log_thresh = rule.train.max_iterations / 10
 | 
						|
      local seen_nan = false
 | 
						|
 | 
						|
      local function train_cb(iter, train_cost, value_cost)
 | 
						|
        if (iter * (rule.train.max_iterations / log_thresh)) % (rule.train.max_iterations) == 0 then
 | 
						|
          if train_cost ~= train_cost and not seen_nan then
 | 
						|
            -- We have nan :( try to log lot's of stuff to dig into a problem
 | 
						|
            seen_nan = true
 | 
						|
            rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s',
 | 
						|
                rule.prefix, set.name,
 | 
						|
                value_cost)
 | 
						|
            for i,e in ipairs(inputs) do
 | 
						|
              lua_util.debugm(N, rspamd_config, 'train vector %s -> %s',
 | 
						|
                  debug_vec(e), outputs[i][1])
 | 
						|
            end
 | 
						|
          end
 | 
						|
 | 
						|
          rspamd_logger.infox(rspamd_config,
 | 
						|
              "ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s",
 | 
						|
              rule.prefix, set.name,
 | 
						|
              ann_key,
 | 
						|
              iter,
 | 
						|
              train_cost,
 | 
						|
              value_cost)
 | 
						|
        end
 | 
						|
      end
 | 
						|
 | 
						|
      train_ann:train1(inputs, outputs, {
 | 
						|
        lr = rule.train.learning_rate,
 | 
						|
        max_epoch = rule.train.max_iterations,
 | 
						|
        cb = train_cb,
 | 
						|
      })
 | 
						|
 | 
						|
      if not seen_nan then
 | 
						|
        local out = train_ann:save()
 | 
						|
        return out
 | 
						|
      else
 | 
						|
        return nil
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    set.learning_spawned = true
 | 
						|
 | 
						|
    local function redis_save_cb(err)
 | 
						|
      if err then
 | 
						|
        rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s',
 | 
						|
            rule.prefix, set.name, ann_key, err)
 | 
						|
        lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
            rspamd_config,
 | 
						|
            rule.redis,
 | 
						|
            nil,
 | 
						|
            false, -- is write
 | 
						|
            gen_unlock_cb(rule, set, ann_key), --callback
 | 
						|
            'HDEL', -- command
 | 
						|
            {ann_key, 'lock'}
 | 
						|
        )
 | 
						|
      else
 | 
						|
        rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s',
 | 
						|
            rule.prefix, set.name, set.ann.redis_key)
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    local function ann_trained(err, data)
 | 
						|
      set.learning_spawned = false
 | 
						|
      if err then
 | 
						|
        rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s',
 | 
						|
            rule.prefix, set.name, err)
 | 
						|
        lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
            rspamd_config,
 | 
						|
            rule.redis,
 | 
						|
            nil,
 | 
						|
            true, -- is write
 | 
						|
            gen_unlock_cb(rule, set, ann_key), --callback
 | 
						|
            'HDEL', -- command
 | 
						|
            {ann_key, 'lock'}
 | 
						|
        )
 | 
						|
      else
 | 
						|
        local ann_data = rspamd_util.zstd_compress(data)
 | 
						|
        if not set.ann then
 | 
						|
          set.ann = {
 | 
						|
            symbols = set.symbols,
 | 
						|
            distance = 0,
 | 
						|
            digest = set.digest,
 | 
						|
            redis_key = ann_key,
 | 
						|
          }
 | 
						|
        end
 | 
						|
        -- Deserialise ANN from the child process
 | 
						|
        ann_trained = rspamd_kann.load(data)
 | 
						|
        local version = (set.ann.version or 0) + 1
 | 
						|
        set.ann.version = version
 | 
						|
        set.ann.ann = ann_trained
 | 
						|
        set.ann.symbols = set.symbols
 | 
						|
        set.ann.redis_key = new_ann_key(rule, set, version)
 | 
						|
 | 
						|
        local profile = {
 | 
						|
          symbols = set.symbols,
 | 
						|
          digest = set.digest,
 | 
						|
          redis_key = set.ann.redis_key,
 | 
						|
          version = version
 | 
						|
        }
 | 
						|
 | 
						|
        local ucl = require "ucl"
 | 
						|
        local profile_serialized = ucl.to_format(profile, 'json-compact', true)
 | 
						|
 | 
						|
        rspamd_logger.infox(rspamd_config,
 | 
						|
            'trained ANN %s:%s, %s bytes; redis key: %s (old key %s)',
 | 
						|
            rule.prefix, set.name, #data, set.ann.redis_key, ann_key)
 | 
						|
 | 
						|
        lua_redis.exec_redis_script(redis_save_unlock_id,
 | 
						|
            {ev_base = ev_base, is_write = true},
 | 
						|
            redis_save_cb,
 | 
						|
            {profile.redis_key,
 | 
						|
             redis_ann_prefix(rule, set.name),
 | 
						|
             ann_data,
 | 
						|
             profile_serialized,
 | 
						|
             tostring(rule.ann_expire),
 | 
						|
             tostring(os.time()),
 | 
						|
             ann_key, -- old key to unlock...
 | 
						|
            })
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    worker:spawn_process{
 | 
						|
      func = train,
 | 
						|
      on_complete = ann_trained,
 | 
						|
      proctitle = string.format("ANN train for %s/%s", rule.prefix, set.name),
 | 
						|
    }
 | 
						|
  end
 | 
						|
  -- Spawn learn and register lock extension
 | 
						|
  set.learning_spawned = true
 | 
						|
  register_lock_extender(rule, set, ev_base, ann_key)
 | 
						|
end
 | 
						|
 | 
						|
-- Utility to extract and split saved training vectors to a table of tables
 | 
						|
local function process_training_vectors(data)
 | 
						|
  return fun.totable(fun.map(function(tok)
 | 
						|
    local _,str = rspamd_util.zstd_decompress(tok)
 | 
						|
    return fun.totable(fun.map(tonumber, lua_util.str_split(tostring(str), ';')))
 | 
						|
  end, data))
 | 
						|
end
 | 
						|
 | 
						|
-- This function does the following:
 | 
						|
-- * Tries to lock ANN
 | 
						|
-- * Loads spam and ham vectors
 | 
						|
-- * Spawn learning process
 | 
						|
local function do_train_ann(worker, ev_base, rule, set, ann_key)
 | 
						|
  local spam_elts = {}
 | 
						|
  local ham_elts = {}
 | 
						|
 | 
						|
  local function redis_ham_cb(err, data)
 | 
						|
    if err or type(data) ~= 'table' then
 | 
						|
      rspamd_logger.errx(rspamd_config, 'cannot get ham tokens for ANN %s from redis: %s',
 | 
						|
        ann_key, err)
 | 
						|
      -- Unlock on error
 | 
						|
      lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
        rspamd_config,
 | 
						|
        rule.redis,
 | 
						|
        nil,
 | 
						|
        true, -- is write
 | 
						|
          gen_unlock_cb(rule, set, ann_key), --callback
 | 
						|
        'HDEL', -- command
 | 
						|
        {ann_key, 'lock'}
 | 
						|
      )
 | 
						|
    else
 | 
						|
      -- Decompress and convert to numbers each training vector
 | 
						|
      ham_elts = process_training_vectors(data)
 | 
						|
      spawn_train(worker, ev_base, rule, set, ann_key, ham_elts, spam_elts)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  -- Spam vectors received
 | 
						|
  local function redis_spam_cb(err, data)
 | 
						|
    if err or type(data) ~= 'table' then
 | 
						|
      rspamd_logger.errx(rspamd_config, 'cannot get spam tokens for ANN %s from redis: %s',
 | 
						|
        ann_key, err)
 | 
						|
      -- Unlock ANN on error
 | 
						|
      lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
        rspamd_config,
 | 
						|
        rule.redis,
 | 
						|
        nil,
 | 
						|
        true, -- is write
 | 
						|
          gen_unlock_cb(rule, set, ann_key), --callback
 | 
						|
        'HDEL', -- command
 | 
						|
        {ann_key, 'lock'}
 | 
						|
      )
 | 
						|
    else
 | 
						|
      -- Decompress and convert to numbers each training vector
 | 
						|
      spam_elts = process_training_vectors(data)
 | 
						|
      -- Now get ham vectors...
 | 
						|
      lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
        rspamd_config,
 | 
						|
        rule.redis,
 | 
						|
        nil,
 | 
						|
        false, -- is write
 | 
						|
        redis_ham_cb, --callback
 | 
						|
        'LRANGE', -- command
 | 
						|
        {ann_key .. '_ham', '0', '-1'}
 | 
						|
      )
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  local function redis_lock_cb(err, data)
 | 
						|
    if err then
 | 
						|
      rspamd_logger.errx(rspamd_config, 'cannot call lock script for ANN %s from redis: %s',
 | 
						|
        ann_key, err)
 | 
						|
    elseif type(data) == 'number' and data == 1 then
 | 
						|
      -- ANN is locked, so we can extract SPAM and HAM vectors and spawn learning
 | 
						|
      lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
        rspamd_config,
 | 
						|
        rule.redis,
 | 
						|
        nil,
 | 
						|
        false, -- is write
 | 
						|
        redis_spam_cb, --callback
 | 
						|
        'LRANGE', -- command
 | 
						|
        {ann_key .. '_spam', '0', '-1'}
 | 
						|
      )
 | 
						|
 | 
						|
      rspamd_logger.infox(rspamd_config, 'lock ANN %s:%s (key name %s) for learning',
 | 
						|
        rule.prefix, set.name, ann_key)
 | 
						|
    else
 | 
						|
      local lock_tm = tonumber(data[1])
 | 
						|
      rspamd_logger.infox(rspamd_config, 'do not learn ANN %s:%s (key name %s), ' ..
 | 
						|
          'locked by another host %s at %s', rule.prefix, set.name, ann_key,
 | 
						|
          data[2], os.date('%c', lock_tm))
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  -- Check if we are already learning this network
 | 
						|
  if set.learning_spawned then
 | 
						|
    rspamd_logger.infox(rspamd_config, 'do not learn ANN %s, already learning another ANN',
 | 
						|
        ann_key)
 | 
						|
    return
 | 
						|
  end
 | 
						|
 | 
						|
  -- Call Redis script that tries to acquire a lock
 | 
						|
  -- This script returns either a boolean or a pair {'lock_time', 'hostname'} when
 | 
						|
  -- ANN is locked by another host (or a process, meh)
 | 
						|
  lua_redis.exec_redis_script(redis_maybe_lock_id,
 | 
						|
    {ev_base = ev_base, is_write = true},
 | 
						|
    redis_lock_cb,
 | 
						|
      {
 | 
						|
        ann_key,
 | 
						|
        tostring(os.time()),
 | 
						|
        tostring(rule.watch_interval * 2),
 | 
						|
        rspamd_util.get_hostname()
 | 
						|
    })
 | 
						|
end
 | 
						|
 | 
						|
-- This function loads new ann from Redis
 | 
						|
-- This is based on `profile` attribute.
 | 
						|
-- ANN is loaded from `profile.redis_key`
 | 
						|
-- Rank of `profile` key is also increased, unfortunately, it means that we need to
 | 
						|
-- serialize profile one more time and set its rank to the current time
 | 
						|
-- set.ann fields are set according to Redis data received
 | 
						|
local function load_new_ann(rule, ev_base, set, profile, min_diff)
 | 
						|
  local ann_key = profile.redis_key
 | 
						|
 | 
						|
  local function data_cb(err, data)
 | 
						|
    if err then
 | 
						|
      rspamd_logger.errx(rspamd_config, 'cannot get ANN data from key: %s; %s',
 | 
						|
          ann_key, err)
 | 
						|
    else
 | 
						|
      if type(data) == 'string' then
 | 
						|
        local _err,ann_data = rspamd_util.zstd_decompress(data)
 | 
						|
        local ann
 | 
						|
 | 
						|
        if _err or not ann_data then
 | 
						|
          rspamd_logger.errx(rspamd_config, 'cannot decompress ANN for %s from Redis key %s: %s',
 | 
						|
              rule.prefix .. ':' .. set.name, ann_key, _err)
 | 
						|
          return
 | 
						|
        else
 | 
						|
          ann = rspamd_kann.load(ann_data)
 | 
						|
 | 
						|
          if ann then
 | 
						|
            set.ann = {
 | 
						|
              digest = profile.digest,
 | 
						|
              version = profile.version,
 | 
						|
              symbols = profile.symbols,
 | 
						|
              distance = min_diff,
 | 
						|
              redis_key = profile.redis_key
 | 
						|
            }
 | 
						|
 | 
						|
            local ucl = require "ucl"
 | 
						|
            local profile_serialized = ucl.to_format(profile, 'json-compact', true)
 | 
						|
            set.ann.ann = ann -- To avoid serialization
 | 
						|
 | 
						|
            local function rank_cb(_, _)
 | 
						|
              -- TODO: maybe add some logging
 | 
						|
            end
 | 
						|
            -- Also update rank for the loaded ANN to avoid removal
 | 
						|
            lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
                rspamd_config,
 | 
						|
                rule.redis,
 | 
						|
                nil,
 | 
						|
                true, -- is write
 | 
						|
                rank_cb, --callback
 | 
						|
                'ZADD', -- command
 | 
						|
                {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
 | 
						|
            )
 | 
						|
            rspamd_logger.infox(rspamd_config, 'loaded ANN for %s:%s from %s; %s bytes compressed; version=%s',
 | 
						|
                rule.prefix, set.name, ann_key, #ann_data, profile.version)
 | 
						|
          else
 | 
						|
            rspamd_logger.errx(rspamd_config, 'cannot deserialize ANN for %s:%s from Redis key %s',
 | 
						|
                rule.prefix, set.name, ann_key)
 | 
						|
          end
 | 
						|
        end
 | 
						|
      else
 | 
						|
        lua_util.debugm(N, rspamd_config, 'no ANN for %s:%s in Redis key %s',
 | 
						|
            rule.prefix, set.name, ann_key)
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
  lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
      rspamd_config,
 | 
						|
      rule.redis,
 | 
						|
      nil,
 | 
						|
      false, -- is write
 | 
						|
      data_cb, --callback
 | 
						|
      'HGET', -- command
 | 
						|
      {ann_key, 'ann'} -- arguments
 | 
						|
  )
 | 
						|
end
 | 
						|
 | 
						|
-- Used to check an element in Redis serialized as JSON
 | 
						|
-- for some specific rule + some specific setting
 | 
						|
-- This function tries to load more fresh or more specific ANNs in lieu of
 | 
						|
-- the existing ones.
 | 
						|
-- Use this function to load ANNs as `callback` parameter for `check_anns` function
 | 
						|
local function process_existing_ann(_, ev_base, rule, set, profiles)
 | 
						|
  local my_symbols = set.symbols
 | 
						|
  local min_diff = math.huge
 | 
						|
  local sel_elt
 | 
						|
 | 
						|
  for _,elt in fun.iter(profiles) do
 | 
						|
    if elt and elt.symbols then
 | 
						|
      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
 | 
						|
      -- Check distance
 | 
						|
      if dist < #my_symbols * .3 then
 | 
						|
        if dist < min_diff then
 | 
						|
          min_diff = dist
 | 
						|
          sel_elt = elt
 | 
						|
        end
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  if sel_elt then
 | 
						|
    -- We can load element from ANN
 | 
						|
    if set.ann then
 | 
						|
      -- We have an existing ANN, probably the same...
 | 
						|
      if set.ann.digest == sel_elt.digest then
 | 
						|
        -- Same ANN, check version
 | 
						|
        if set.ann.version < sel_elt.version then
 | 
						|
          -- Load new ann
 | 
						|
          rspamd_logger.infox(rspamd_config, 'ann %s is changed, ' ..
 | 
						|
              'our version = %s, remote version = %s',
 | 
						|
              rule.prefix .. ':' .. set.name,
 | 
						|
              set.ann.version,
 | 
						|
              sel_elt.version)
 | 
						|
          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
 | 
						|
        else
 | 
						|
          lua_util.debugm(N, rspamd_config, 'ann %s is not changed, ' ..
 | 
						|
              'our version = %s, remote version = %s',
 | 
						|
              rule.prefix .. ':' .. set.name,
 | 
						|
              set.ann.version,
 | 
						|
              sel_elt.version)
 | 
						|
        end
 | 
						|
      else
 | 
						|
        -- We have some different ANN, so we need to compare distance
 | 
						|
        if set.ann.distance > min_diff then
 | 
						|
          -- Load more specific ANN
 | 
						|
          rspamd_logger.infox(rspamd_config, 'more specific ann is available for %s, ' ..
 | 
						|
              'our distance = %s, remote distance = %s',
 | 
						|
              rule.prefix .. ':' .. set.name,
 | 
						|
              set.ann.distance,
 | 
						|
              min_diff)
 | 
						|
          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
 | 
						|
        else
 | 
						|
          lua_util.debugm(N, rspamd_config, 'ann %s is not changed or less specific, ' ..
 | 
						|
              'our distance = %s, remote distance = %s',
 | 
						|
              rule.prefix .. ':' .. set.name,
 | 
						|
              set.ann.distance,
 | 
						|
              min_diff)
 | 
						|
        end
 | 
						|
      end
 | 
						|
    else
 | 
						|
      -- We have no ANN, load new one
 | 
						|
      load_new_ann(rule, ev_base, set, sel_elt, min_diff)
 | 
						|
    end
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
-- This function checks all profiles and selects if we can train our
 | 
						|
-- ANN. By our we mean that it has exactly the same symbols in profile.
 | 
						|
-- Use this function to train ANN as `callback` parameter for `check_anns` function
 | 
						|
local function maybe_train_existing_ann(worker, ev_base, rule, set, profiles)
 | 
						|
  local my_symbols = set.symbols
 | 
						|
  local sel_elt
 | 
						|
 | 
						|
  for _,elt in fun.iter(profiles) do
 | 
						|
    if elt and elt.symbols then
 | 
						|
      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
 | 
						|
      -- Check distance
 | 
						|
      if dist == 0 then
 | 
						|
        sel_elt = elt
 | 
						|
        break
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  if sel_elt then
 | 
						|
    -- We have our ANN and that's train vectors, check if we can learn
 | 
						|
    local ann_key = sel_elt.redis_key
 | 
						|
 | 
						|
    lua_util.debugm(N, rspamd_config, "check if ANN %s needs to be trained",
 | 
						|
        ann_key)
 | 
						|
 | 
						|
    -- Create continuation closure
 | 
						|
    local redis_len_cb_gen = function(cont_cb, what, is_final)
 | 
						|
      return function(err, data)
 | 
						|
        if err then
 | 
						|
          rspamd_logger.errx(rspamd_config,
 | 
						|
              'cannot get ANN %s trains %s from redis: %s', what, ann_key, err)
 | 
						|
        elseif data and type(data) == 'number' or type(data) == 'string' then
 | 
						|
          if tonumber(data) and tonumber(data) >= rule.train.max_trains then
 | 
						|
            if is_final then
 | 
						|
              rspamd_logger.debugm(N, rspamd_config,
 | 
						|
                  'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
 | 
						|
                  ann_key, tonumber(data), rule.train.max_trains, what)
 | 
						|
            else
 | 
						|
              rspamd_logger.debugm(N, rspamd_config,
 | 
						|
                  'checked %s vectors in ANN %s: %s vectors; %s required, need to check other class vectors',
 | 
						|
                  what, ann_key, tonumber(data), rule.train.max_trains)
 | 
						|
            end
 | 
						|
            cont_cb()
 | 
						|
          else
 | 
						|
            rspamd_logger.debugm(N, rspamd_config,
 | 
						|
                'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
 | 
						|
                ann_key, what, tonumber(data), rule.train.max_trains)
 | 
						|
          end
 | 
						|
        end
 | 
						|
      end
 | 
						|
 | 
						|
    end
 | 
						|
 | 
						|
    local function initiate_train()
 | 
						|
      rspamd_logger.infox(rspamd_config,
 | 
						|
          'need to learn ANN %s after %s required learn vectors',
 | 
						|
          ann_key, rule.train.max_trains)
 | 
						|
      do_train_ann(worker, ev_base, rule, set, ann_key)
 | 
						|
    end
 | 
						|
 | 
						|
    -- Spam vector is OK, check ham vector length
 | 
						|
    local function check_ham_len()
 | 
						|
      lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
          rspamd_config,
 | 
						|
          rule.redis,
 | 
						|
          nil,
 | 
						|
          false, -- is write
 | 
						|
          redis_len_cb_gen(initiate_train, 'ham', true), --callback
 | 
						|
          'LLEN', -- command
 | 
						|
          {ann_key .. '_ham'}
 | 
						|
      )
 | 
						|
    end
 | 
						|
 | 
						|
    lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
        rspamd_config,
 | 
						|
        rule.redis,
 | 
						|
        nil,
 | 
						|
        false, -- is write
 | 
						|
        redis_len_cb_gen(check_ham_len, 'spam', false), --callback
 | 
						|
        'LLEN', -- command
 | 
						|
        {ann_key .. '_spam'}
 | 
						|
    )
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
-- Used to deserialise ANN element from a list
 | 
						|
local function load_ann_profile(element)
 | 
						|
  local ucl = require "ucl"
 | 
						|
 | 
						|
  local parser = ucl.parser()
 | 
						|
  local res,ucl_err = parser:parse_string(element)
 | 
						|
  if not res then
 | 
						|
    rspamd_logger.warnx(rspamd_config, 'cannot parse ANN from redis: %s',
 | 
						|
        ucl_err)
 | 
						|
    return nil
 | 
						|
  else
 | 
						|
    local profile = parser:get_object()
 | 
						|
    local checked,schema_err = redis_profile_schema:transform(profile)
 | 
						|
    if not checked then
 | 
						|
      rspamd_logger.errx(rspamd_config, "cannot parse profile schema: %s", schema_err)
 | 
						|
 | 
						|
      return nil
 | 
						|
    end
 | 
						|
    return checked
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
-- Function to check or load ANNs from Redis
 | 
						|
local function check_anns(worker, cfg, ev_base, rule, process_callback, what)
 | 
						|
  for _,set in pairs(rule.settings) do
 | 
						|
    local function members_cb(err, data)
 | 
						|
      if err then
 | 
						|
        rspamd_logger.errx(cfg, 'cannot get ANNs list from redis: %s',
 | 
						|
            err)
 | 
						|
        set.can_store_vectors = true
 | 
						|
      elseif type(data) == 'table' then
 | 
						|
        lua_util.debugm(N, cfg, '%s: process element %s:%s',
 | 
						|
            what, rule.prefix, set.name)
 | 
						|
        process_callback(worker, ev_base, rule, set, fun.map(load_ann_profile, data))
 | 
						|
        set.can_store_vectors = true
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    if type(set) == 'table' then
 | 
						|
      -- Extract all profiles for some specific settings id
 | 
						|
      -- Get the last `max_profiles` recently used
 | 
						|
      -- Select the most appropriate to our profile but it should not differ by more
 | 
						|
      -- than 30% of symbols
 | 
						|
      lua_redis.redis_make_request_taskless(ev_base,
 | 
						|
          cfg,
 | 
						|
          rule.redis,
 | 
						|
          nil,
 | 
						|
          false, -- is write
 | 
						|
          members_cb, --callback
 | 
						|
          'ZREVRANGE', -- command
 | 
						|
          {set.prefix, '0', tostring(settings.max_profiles)} -- arguments
 | 
						|
      )
 | 
						|
    end
 | 
						|
  end -- Cycle over all settings
 | 
						|
 | 
						|
  return rule.watch_interval
 | 
						|
end
 | 
						|
 | 
						|
-- Function to clean up old ANNs
 | 
						|
local function cleanup_anns(rule, cfg, ev_base)
 | 
						|
  for _,set in pairs(rule.settings) do
 | 
						|
    local function invalidate_cb(err, data)
 | 
						|
      if err then
 | 
						|
        rspamd_logger.errx(cfg, 'cannot exec invalidate script in redis: %s',
 | 
						|
            err)
 | 
						|
      elseif type(data) == 'table' then
 | 
						|
        for _,expired in ipairs(data) do
 | 
						|
          local profile = load_ann_profile(expired)
 | 
						|
          rspamd_logger.infox(cfg, 'invalidated ANN for %s; redis key: %s; version=%s',
 | 
						|
              rule.prefix .. ':' .. set.name,
 | 
						|
              profile.redis_key,
 | 
						|
              profile.version)
 | 
						|
        end
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    if type(set) == 'table' then
 | 
						|
      lua_redis.exec_redis_script(redis_maybe_invalidate_id,
 | 
						|
          {ev_base = ev_base, is_write = true},
 | 
						|
          invalidate_cb,
 | 
						|
          {set.prefix, tostring(settings.max_profiles)})
 | 
						|
    end
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
local function ann_push_vector(task)
 | 
						|
  if task:has_flag('skip') then
 | 
						|
    lua_util.debugm(N, task, 'do not push data for skipped task')
 | 
						|
    return
 | 
						|
  end
 | 
						|
  if not settings.allow_local and lua_util.is_rspamc_or_controller(task) then
 | 
						|
    lua_util.debugm(N, task, 'do not push data for manual scan')
 | 
						|
    return
 | 
						|
  end
 | 
						|
 | 
						|
  local verdict,score = lua_verdict.get_specific_verdict(N, task)
 | 
						|
 | 
						|
  if verdict == 'passthrough' then
 | 
						|
    lua_util.debugm(N, task, 'ignore task as its verdict is %s(%s)',
 | 
						|
        verdict, score)
 | 
						|
 | 
						|
    return
 | 
						|
  end
 | 
						|
 | 
						|
  if score ~= score then
 | 
						|
    lua_util.debugm(N, task, 'ignore task as its score is nan (%s verdict)',
 | 
						|
        verdict)
 | 
						|
 | 
						|
    return
 | 
						|
  end
 | 
						|
 | 
						|
  for _,rule in pairs(settings.rules) do
 | 
						|
    local set = get_rule_settings(task, rule)
 | 
						|
 | 
						|
    if set then
 | 
						|
      ann_push_task_result(rule, task, verdict, score, set)
 | 
						|
    else
 | 
						|
      lua_util.debugm(N, task, 'settings not found in rule %s', rule.prefix)
 | 
						|
    end
 | 
						|
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
-- This function is used to adjust profiles and allowed setting ids for each rule
 | 
						|
-- It must be called when all settings are already registered (e.g. at post-init for config)
 | 
						|
local function process_rules_settings()
 | 
						|
  local function process_settings_elt(rule, selt)
 | 
						|
    local profile = rule.profile[selt.name]
 | 
						|
    if profile then
 | 
						|
      -- Use static user defined profile
 | 
						|
      -- Ensure that we have an array...
 | 
						|
      lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s",
 | 
						|
          rule.prefix, selt.name, profile)
 | 
						|
      if not profile[1] then profile = lua_util.keys(profile) end
 | 
						|
      selt.symbols = profile
 | 
						|
    else
 | 
						|
      lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)",
 | 
						|
          rule.prefix, selt.name)
 | 
						|
    end
 | 
						|
 | 
						|
    local function filter_symbols_predicate(sname)
 | 
						|
      local fl = rspamd_config:get_symbol_flags(sname)
 | 
						|
      if fl then
 | 
						|
        fl = lua_util.list_to_hash(fl)
 | 
						|
 | 
						|
        return not (fl.nostat or fl.idempotent or fl.skip)
 | 
						|
      end
 | 
						|
 | 
						|
      return false
 | 
						|
    end
 | 
						|
 | 
						|
    -- Generic stuff
 | 
						|
    table.sort(fun.totable(fun.filter(filter_symbols_predicate, selt.symbols)))
 | 
						|
 | 
						|
    selt.digest = lua_util.table_digest(selt.symbols)
 | 
						|
    selt.prefix = redis_ann_prefix(rule, selt.name)
 | 
						|
 | 
						|
    lua_redis.register_prefix(selt.prefix, N,
 | 
						|
        string.format('NN prefix for rule "%s"; settings id "%s"',
 | 
						|
            rule.prefix, selt.name), {
 | 
						|
          persistent = true,
 | 
						|
          type = 'zlist',
 | 
						|
        })
 | 
						|
    -- Versions
 | 
						|
    lua_redis.register_prefix(selt.prefix .. '_\\d+', N,
 | 
						|
        string.format('NN storage for rule "%s"; settings id "%s"',
 | 
						|
            rule.prefix, selt.name), {
 | 
						|
          persistent = true,
 | 
						|
          type = 'hash',
 | 
						|
        })
 | 
						|
    lua_redis.register_prefix(selt.prefix .. '_\\d+_spam', N,
 | 
						|
        string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
 | 
						|
            rule.prefix, selt.name), {
 | 
						|
          persistent = true,
 | 
						|
          type = 'list',
 | 
						|
        })
 | 
						|
    lua_redis.register_prefix(selt.prefix .. '_\\d+_ham', N,
 | 
						|
        string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
 | 
						|
            rule.prefix, selt.name), {
 | 
						|
          persistent = true,
 | 
						|
          type = 'list',
 | 
						|
        })
 | 
						|
  end
 | 
						|
 | 
						|
  for k,rule in pairs(settings.rules) do
 | 
						|
    if not rule.allowed_settings then
 | 
						|
      rule.allowed_settings = {}
 | 
						|
    elseif rule.allowed_settings == 'all' then
 | 
						|
      -- Extract all settings ids
 | 
						|
      rule.allowed_settings = lua_util.keys(lua_settings.all_settings())
 | 
						|
    end
 | 
						|
 | 
						|
    -- Convert to a map <setting_id> -> true
 | 
						|
    rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings)
 | 
						|
 | 
						|
    -- Check if we can work without settings
 | 
						|
    if k == 'default' or type(rule.default) ~= 'boolean' then
 | 
						|
      rule.default = true
 | 
						|
    end
 | 
						|
 | 
						|
    rule.settings = {}
 | 
						|
 | 
						|
    if rule.default then
 | 
						|
      local default_settings = {
 | 
						|
        symbols = lua_settings.default_symbols(),
 | 
						|
        name = 'default'
 | 
						|
      }
 | 
						|
 | 
						|
      process_settings_elt(rule, default_settings)
 | 
						|
      rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32
 | 
						|
    end
 | 
						|
 | 
						|
    -- Now, for each allowed settings, we store sorted symbols + digest
 | 
						|
    -- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest }
 | 
						|
    for s,_ in pairs(rule.allowed_settings) do
 | 
						|
      -- Here, we have a name, set of symbols and
 | 
						|
      local settings_id = s
 | 
						|
      if type(settings_id) ~= 'number' then
 | 
						|
        settings_id = lua_settings.numeric_settings_id(s)
 | 
						|
      end
 | 
						|
      local selt = lua_settings.settings_by_id(settings_id)
 | 
						|
 | 
						|
      local nelt = {
 | 
						|
        symbols = selt.symbols, -- Already sorted
 | 
						|
        name = selt.name
 | 
						|
      }
 | 
						|
 | 
						|
      process_settings_elt(rule, nelt)
 | 
						|
      for id,ex in pairs(rule.settings) do
 | 
						|
        if type(ex) == 'table' then
 | 
						|
          if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then
 | 
						|
            -- Equal symbols, add reference
 | 
						|
            lua_util.debugm(N, rspamd_config,
 | 
						|
                'added reference from settings id %s to %s; same symbols',
 | 
						|
                nelt.name, ex.name)
 | 
						|
            rule.settings[settings_id] = id
 | 
						|
            nelt = nil
 | 
						|
          end
 | 
						|
        end
 | 
						|
      end
 | 
						|
 | 
						|
      if nelt then
 | 
						|
        rule.settings[settings_id] = nelt
 | 
						|
        lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s',
 | 
						|
            nelt.name, settings_id, rule.prefix)
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
redis_params = lua_redis.parse_redis_server('neural')
 | 
						|
 | 
						|
if not redis_params then
 | 
						|
  redis_params = lua_redis.parse_redis_server('fann_redis')
 | 
						|
end
 | 
						|
 | 
						|
-- Initialization part
 | 
						|
if not (module_config and type(module_config) == 'table') or not redis_params then
 | 
						|
  rspamd_logger.infox(rspamd_config, 'Module is unconfigured')
 | 
						|
  lua_util.disable_module(N, "redis")
 | 
						|
  return
 | 
						|
end
 | 
						|
 | 
						|
local rules = module_config['rules']
 | 
						|
 | 
						|
if not rules then
 | 
						|
  -- Use legacy configuration
 | 
						|
  rules = {}
 | 
						|
  rules['default'] = module_config
 | 
						|
end
 | 
						|
 | 
						|
local id = rspamd_config:register_symbol({
 | 
						|
  name = 'NEURAL_CHECK',
 | 
						|
  type = 'postfilter,nostat',
 | 
						|
  priority = 6,
 | 
						|
  callback = ann_scores_filter
 | 
						|
})
 | 
						|
 | 
						|
settings = lua_util.override_defaults(settings, module_config)
 | 
						|
settings.rules = {} -- Reset unless validated further in the cycle
 | 
						|
 | 
						|
-- Check all rules
 | 
						|
for k,r in pairs(rules) do
 | 
						|
  local rule_elt = lua_util.override_defaults(default_options, r)
 | 
						|
  rule_elt['redis'] = redis_params
 | 
						|
  rule_elt['anns'] = {} -- Store ANNs here
 | 
						|
 | 
						|
  if not rule_elt.prefix then
 | 
						|
    rule_elt.prefix = k
 | 
						|
  end
 | 
						|
  if not rule_elt.name then
 | 
						|
    rule_elt.name = k
 | 
						|
  end
 | 
						|
  if rule_elt.train.max_train then
 | 
						|
    rule_elt.train.max_trains = rule_elt.train.max_train
 | 
						|
  end
 | 
						|
 | 
						|
  if not rule_elt.profile then rule_elt.profile = {} end
 | 
						|
 | 
						|
  rspamd_logger.infox(rspamd_config, "register ann rule %s", k)
 | 
						|
  settings.rules[k] = rule_elt
 | 
						|
  rspamd_config:set_metric_symbol({
 | 
						|
    name = rule_elt.symbol_spam,
 | 
						|
    score = 0.0,
 | 
						|
    description = 'Neural network SPAM',
 | 
						|
    group = 'neural'
 | 
						|
  })
 | 
						|
  rspamd_config:register_symbol({
 | 
						|
    name = rule_elt.symbol_spam,
 | 
						|
    type = 'virtual,nostat',
 | 
						|
    parent = id
 | 
						|
  })
 | 
						|
 | 
						|
  rspamd_config:set_metric_symbol({
 | 
						|
    name = rule_elt.symbol_ham,
 | 
						|
    score = -0.0,
 | 
						|
    description = 'Neural network HAM',
 | 
						|
    group = 'neural'
 | 
						|
  })
 | 
						|
  rspamd_config:register_symbol({
 | 
						|
    name = rule_elt.symbol_ham,
 | 
						|
    type = 'virtual,nostat',
 | 
						|
    parent = id
 | 
						|
  })
 | 
						|
end
 | 
						|
 | 
						|
rspamd_config:register_symbol({
 | 
						|
  name = 'NEURAL_LEARN',
 | 
						|
  type = 'idempotent,nostat,explicit_disable',
 | 
						|
  priority = 5,
 | 
						|
  callback = ann_push_vector
 | 
						|
})
 | 
						|
 | 
						|
-- Add training scripts
 | 
						|
for _,rule in pairs(settings.rules) do
 | 
						|
  load_scripts(rule.redis)
 | 
						|
  -- We also need to deal with settings
 | 
						|
  rspamd_config:add_post_init(process_rules_settings)
 | 
						|
  -- This function will check ANNs in Redis when a worker is loaded
 | 
						|
  rspamd_config:add_on_load(function(cfg, ev_base, worker)
 | 
						|
    if worker:is_scanner() then
 | 
						|
      rspamd_config:add_periodic(ev_base, 0.0,
 | 
						|
          function(_, _)
 | 
						|
            return check_anns(worker, cfg, ev_base, rule, process_existing_ann,
 | 
						|
                'try_load_ann')
 | 
						|
          end)
 | 
						|
    end
 | 
						|
 | 
						|
    if worker:is_primary_controller() then
 | 
						|
      -- We also want to train neural nets when they have enough data
 | 
						|
      rspamd_config:add_periodic(ev_base, 0.0,
 | 
						|
          function(_, _)
 | 
						|
            -- Clean old ANNs
 | 
						|
            cleanup_anns(rule, cfg, ev_base)
 | 
						|
            return check_anns(worker, cfg, ev_base, rule, maybe_train_existing_ann,
 | 
						|
                'try_train_ann')
 | 
						|
          end)
 | 
						|
    end
 | 
						|
  end)
 | 
						|
end
 |