添加 github.com/pion/dtls 代码

This commit is contained in:
bjdgyc
2021-05-21 19:03:00 +08:00
parent 54a0cb7928
commit 28b5119f50
380 changed files with 16870 additions and 0 deletions

View File

@@ -0,0 +1,251 @@
// Package ccm implements a CCM, Counter with CBC-MAC
// as per RFC 3610.
//
// See https://tools.ietf.org/html/rfc3610
//
// This code was lifted from https://github.com/bocajim/dtls/blob/a3300364a283fcb490d28a93d7fcfa7ba437fbbe/ccm/ccm.go
// and as such was not written by the Pions authors. Like Pions this
// code is licensed under MIT.
//
// A request for including CCM into the Go standard library
// can be found as issue #27484 on the https://github.com/golang/go/
// repository.
package ccm
import (
"crypto/cipher"
"crypto/subtle"
"encoding/binary"
"errors"
"math"
)
// ccm represents a Counter with CBC-MAC with a specific key.
type ccm struct {
b cipher.Block
M uint8
L uint8
}
const ccmBlockSize = 16
// CCM is a block cipher in Counter with CBC-MAC mode.
// Providing authenticated encryption with associated data via the cipher.AEAD interface.
type CCM interface {
cipher.AEAD
// MaxLength returns the maxium length of plaintext in calls to Seal.
// The maximum length of ciphertext in calls to Open is MaxLength()+Overhead().
// The maximum length is related to CCM's `L` parameter (15-noncesize) and
// is 1<<(8*L) - 1 (but also limited by the maxium size of an int).
MaxLength() int
}
var (
errInvalidBlockSize = errors.New("ccm: NewCCM requires 128-bit block cipher")
errInvalidTagSize = errors.New("ccm: tagsize must be 4, 6, 8, 10, 12, 14, or 16")
errInvalidNonceSize = errors.New("ccm: invalid nonce size")
)
// NewCCM returns the given 128-bit block cipher wrapped in CCM.
// The tagsize must be an even integer between 4 and 16 inclusive
// and is used as CCM's `M` parameter.
// The noncesize must be an integer between 7 and 13 inclusive,
// 15-noncesize is used as CCM's `L` parameter.
func NewCCM(b cipher.Block, tagsize, noncesize int) (CCM, error) {
if b.BlockSize() != ccmBlockSize {
return nil, errInvalidBlockSize
}
if tagsize < 4 || tagsize > 16 || tagsize&1 != 0 {
return nil, errInvalidTagSize
}
lensize := 15 - noncesize
if lensize < 2 || lensize > 8 {
return nil, errInvalidNonceSize
}
c := &ccm{b: b, M: uint8(tagsize), L: uint8(lensize)}
return c, nil
}
func (c *ccm) NonceSize() int { return 15 - int(c.L) }
func (c *ccm) Overhead() int { return int(c.M) }
func (c *ccm) MaxLength() int { return maxlen(c.L, c.Overhead()) }
func maxlen(l uint8, tagsize int) int {
max := (uint64(1) << (8 * l)) - 1
if m64 := uint64(math.MaxInt64) - uint64(tagsize); l > 8 || max > m64 {
max = m64 // The maximum lentgh on a 64bit arch
}
if max != uint64(int(max)) {
return math.MaxInt32 - tagsize // We have only 32bit int's
}
return int(max)
}
// MaxNonceLength returns the maximum nonce length for a given plaintext length.
// A return value <= 0 indicates that plaintext length is too large for
// any nonce length.
func MaxNonceLength(pdatalen int) int {
const tagsize = 16
for L := 2; L <= 8; L++ {
if maxlen(uint8(L), tagsize) >= pdatalen {
return 15 - L
}
}
return 0
}
func (c *ccm) cbcRound(mac, data []byte) {
for i := 0; i < ccmBlockSize; i++ {
mac[i] ^= data[i]
}
c.b.Encrypt(mac, mac)
}
func (c *ccm) cbcData(mac, data []byte) {
for len(data) >= ccmBlockSize {
c.cbcRound(mac, data[:ccmBlockSize])
data = data[ccmBlockSize:]
}
if len(data) > 0 {
var block [ccmBlockSize]byte
copy(block[:], data)
c.cbcRound(mac, block[:])
}
}
var errPlaintextTooLong = errors.New("ccm: plaintext too large")
func (c *ccm) tag(nonce, plaintext, adata []byte) ([]byte, error) {
var mac [ccmBlockSize]byte
if len(adata) > 0 {
mac[0] |= 1 << 6
}
mac[0] |= (c.M - 2) << 2
mac[0] |= c.L - 1
if len(nonce) != c.NonceSize() {
return nil, errInvalidNonceSize
}
if len(plaintext) > c.MaxLength() {
return nil, errPlaintextTooLong
}
binary.BigEndian.PutUint64(mac[ccmBlockSize-8:], uint64(len(plaintext)))
copy(mac[1:ccmBlockSize-c.L], nonce)
c.b.Encrypt(mac[:], mac[:])
var block [ccmBlockSize]byte
if n := uint64(len(adata)); n > 0 {
// First adata block includes adata length
i := 2
if n <= 0xfeff {
binary.BigEndian.PutUint16(block[:i], uint16(n))
} else {
block[0] = 0xfe
block[1] = 0xff
if n < uint64(1<<32) {
i = 2 + 4
binary.BigEndian.PutUint32(block[2:i], uint32(n))
} else {
i = 2 + 8
binary.BigEndian.PutUint64(block[2:i], n)
}
}
i = copy(block[i:], adata)
c.cbcRound(mac[:], block[:])
c.cbcData(mac[:], adata[i:])
}
if len(plaintext) > 0 {
c.cbcData(mac[:], plaintext)
}
return mac[:c.M], nil
}
// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
// From crypto/cipher/gcm.go
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
// Seal encrypts and authenticates plaintext, authenticates the
// additional data and appends the result to dst, returning the updated
// slice. The nonce must be NonceSize() bytes long and unique for all
// time, for a given key.
// The plaintext must be no longer than MaxLength() bytes long.
//
// The plaintext and dst may alias exactly or not at all.
func (c *ccm) Seal(dst, nonce, plaintext, adata []byte) []byte {
tag, err := c.tag(nonce, plaintext, adata)
if err != nil {
// The cipher.AEAD interface doesn't allow for an error return.
panic(err) // nolint
}
var iv, s0 [ccmBlockSize]byte
iv[0] = c.L - 1
copy(iv[1:ccmBlockSize-c.L], nonce)
c.b.Encrypt(s0[:], iv[:])
for i := 0; i < int(c.M); i++ {
tag[i] ^= s0[i]
}
iv[len(iv)-1] |= 1
stream := cipher.NewCTR(c.b, iv[:])
ret, out := sliceForAppend(dst, len(plaintext)+int(c.M))
stream.XORKeyStream(out, plaintext)
copy(out[len(plaintext):], tag)
return ret
}
var (
errOpen = errors.New("ccm: message authentication failed")
errCiphertextTooShort = errors.New("ccm: ciphertext too short")
errCiphertextTooLong = errors.New("ccm: ciphertext too long")
)
func (c *ccm) Open(dst, nonce, ciphertext, adata []byte) ([]byte, error) {
if len(ciphertext) < int(c.M) {
return nil, errCiphertextTooShort
}
if len(ciphertext) > c.MaxLength()+c.Overhead() {
return nil, errCiphertextTooLong
}
tag := make([]byte, int(c.M))
copy(tag, ciphertext[len(ciphertext)-int(c.M):])
ciphertextWithoutTag := ciphertext[:len(ciphertext)-int(c.M)]
var iv, s0 [ccmBlockSize]byte
iv[0] = c.L - 1
copy(iv[1:ccmBlockSize-c.L], nonce)
c.b.Encrypt(s0[:], iv[:])
for i := 0; i < int(c.M); i++ {
tag[i] ^= s0[i]
}
iv[len(iv)-1] |= 1
stream := cipher.NewCTR(c.b, iv[:])
// Cannot decrypt directly to dst since we're not supposed to
// reveal the plaintext to the caller if authentication fails.
plaintext := make([]byte, len(ciphertextWithoutTag))
stream.XORKeyStream(plaintext, ciphertextWithoutTag)
expectedTag, err := c.tag(nonce, plaintext, adata)
if err != nil {
return nil, err
}
if subtle.ConstantTimeCompare(tag, expectedTag) != 1 {
return nil, errOpen
}
return append(dst, plaintext...), nil
}

View File

@@ -0,0 +1,419 @@
package ccm
// Refer to RFC 3610 section 8 for the vectors.
import (
"bytes"
"crypto/aes"
"encoding/hex"
"errors"
"fmt"
"testing"
)
func mustHexDecode(s string) []byte {
r, err := hex.DecodeString(s)
if err != nil {
panic(err)
}
return r
}
var (
aesKey1to12 = mustHexDecode("c0c1c2c3c4c5c6c7c8c9cacbcccdcecf") //nolint:gochecknoglobals
aesKey13to24 = mustHexDecode("d7828d13b2b0bdc325a76236df93cc6b") //nolint:gochecknoglobals
)
// AESKey: AES Key
// CipherText: Authenticated and encrypted output
// ClearHeaderOctets: Input with X cleartext header octets
// Data: Input with X cleartext header octets
// M: length(CBC-MAC)
// Nonce: Nonce
type vector struct {
AESKey []byte
CipherText []byte
ClearHeaderOctets int
Data []byte
M int
Nonce []byte
}
func TestRFC3610Vectors(t *testing.T) {
cases := []vector{
// Vectors 1-12
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("0001020304050607588c979a61c663d2f066d0c2c0f989806d5f6b61dac38417e8d12cfdf926e0"),
ClearHeaderOctets: 8,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e"),
M: 8,
Nonce: mustHexDecode("00000003020100a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060772c91a36e135f8cf291ca894085c87e3cc15c439c9e43a3ba091d56e10400916"),
ClearHeaderOctets: 8,
Data: mustHexDecode("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"),
M: 8,
Nonce: mustHexDecode("00000004030201a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060751b1e5f44a197d1da46b0f8e2d282ae871e838bb64da8596574adaa76fbd9fb0c5"),
ClearHeaderOctets: 8,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f20"),
M: 8,
Nonce: mustHexDecode("00000005040302a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060708090a0ba28c6865939a9a79faaa5c4c2a9d4a91cdac8c96c861b9c9e61ef1"),
ClearHeaderOctets: 12,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e"),
M: 8,
Nonce: mustHexDecode("00000006050403a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060708090a0bdcf1fb7b5d9e23fb9d4e131253658ad86ebdca3e51e83f077d9c2d93"),
ClearHeaderOctets: 12,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"),
M: 8,
Nonce: mustHexDecode("00000007060504a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060708090a0b6fc1b011f006568b5171a42d953d469b2570a4bd87405a0443ac91cb94"),
ClearHeaderOctets: 12,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f20"),
M: 8,
Nonce: mustHexDecode("00000008070605a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("00010203040506070135d1b2c95f41d5d1d4fec185d166b8094e999dfed96c048c56602c97acbb7490"),
ClearHeaderOctets: 8,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e"),
M: 10,
Nonce: mustHexDecode("00000009080706a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("00010203040506077b75399ac0831dd2f0bbd75879a2fd8f6cae6b6cd9b7db24c17b4433f434963f34b4"),
ClearHeaderOctets: 8,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"),
M: 10,
Nonce: mustHexDecode("0000000a090807a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060782531a60cc24945a4b8279181ab5c84df21ce7f9b73f42e197ea9c07e56b5eb17e5f4e"),
ClearHeaderOctets: 8,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f20"),
M: 10,
Nonce: mustHexDecode("0000000b0a0908a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060708090a0b07342594157785152b074098330abb141b947b566aa9406b4d999988dd"),
ClearHeaderOctets: 12,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e"),
M: 10,
Nonce: mustHexDecode("0000000c0b0a09a0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060708090a0b676bb20380b0e301e8ab79590a396da78b834934f53aa2e9107a8b6c022c"),
ClearHeaderOctets: 12,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"),
M: 10,
Nonce: mustHexDecode("0000000d0c0b0aa0a1a2a3a4a5"),
},
{
AESKey: aesKey1to12,
CipherText: mustHexDecode("000102030405060708090a0bc0ffa0d6f05bdb67f24d43a4338d2aa4bed7b20e43cd1aa31662e7ad65d6db"),
ClearHeaderOctets: 12,
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f20"),
M: 10,
Nonce: mustHexDecode("0000000e0d0c0ba0a1a2a3a4a5"),
},
// Vectors 13-24
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("0be1a88bace018b14cb97f86a2a4689a877947ab8091ef5386a6ffbdd080f8e78cf7cb0cddd7b3"),
ClearHeaderOctets: 8,
Data: mustHexDecode("0be1a88bace018b108e8cf97d820ea258460e96ad9cf5289054d895ceac47c"),
M: 8,
Nonce: mustHexDecode("00412b4ea9cdbe3c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("63018f76dc8a1bcb4ccb1e7ca981befaa0726c55d378061298c85c92814abc33c52ee81d7d77c08a"),
ClearHeaderOctets: 8,
Data: mustHexDecode("63018f76dc8a1bcb9020ea6f91bdd85afa0039ba4baff9bfb79c7028949cd0ec"),
M: 8,
Nonce: mustHexDecode("0033568ef7b2633c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("aa6cfa36cae86b40b1d23a2220ddc0ac900d9aa03c61fcf4a559a4417767089708a776796edb723506"),
ClearHeaderOctets: 8,
Data: mustHexDecode("aa6cfa36cae86b40b916e0eacc1c00d7dcec68ec0b3bbb1a02de8a2d1aa346132e"),
M: 8,
Nonce: mustHexDecode("00103fe41336713c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("d0d0735c531e1becf049c24414d253c3967b70609b7cbb7c499160283245269a6f49975bcadeaf"),
ClearHeaderOctets: 12,
Data: mustHexDecode("d0d0735c531e1becf049c24412daac5630efa5396f770ce1a66b21f7b2101c"),
M: 8,
Nonce: mustHexDecode("00764c63b8058e3c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("77b60f011c03e1525899bcae5545ff1a085ee2efbf52b2e04bee1e2336c73e3f762c0c7744fe7e3c"),
ClearHeaderOctets: 12,
Data: mustHexDecode("77b60f011c03e1525899bcaee88b6a46c78d63e52eb8c546efb5de6f75e9cc0d"),
M: 8,
Nonce: mustHexDecode("00f8b678094e3b3c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("cd9044d2b71fdb8120ea60c0009769ecabdf48625594c59251e6035722675e04c847099e5ae0704551"),
ClearHeaderOctets: 12,
Data: mustHexDecode("cd9044d2b71fdb8120ea60c06435acbafb11a82e2f071d7ca4a5ebd93a803ba87f"),
M: 8,
Nonce: mustHexDecode("00d560912d3f703c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("d85bc7e69f944fb8bc218daa947427b6db386a99ac1aef23ade0b52939cb6a637cf9bec2408897c6ba"),
ClearHeaderOctets: 8,
Data: mustHexDecode("d85bc7e69f944fb88a19b950bcf71a018e5e6701c91787659809d67dbedd18"),
M: 10,
Nonce: mustHexDecode("0042fff8f1951c3c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("74a0ebc9069f5b375810e6fd25874022e80361a478e3e9cf484ab04f447efff6f0a477cc2fc9bf548944"),
ClearHeaderOctets: 8,
Data: mustHexDecode("74a0ebc9069f5b371761433c37c5a35fc1f39f406302eb907c6163be38c98437"),
M: 10,
Nonce: mustHexDecode("00920f40e56cdc3c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("44a3aa3aae6475caf2beed7bc5098e83feb5b31608f8e29c38819a89c8e776f1544d4151a4ed3a8b87b9ce"),
ClearHeaderOctets: 8,
Data: mustHexDecode("44a3aa3aae6475caa434a8e58500c6e41530538862d686ea9e81301b5ae4226bfa"),
M: 10,
Nonce: mustHexDecode("0027ca0c7120bc3c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("ec46bb63b02520c33c49fd7031d750a09da3ed7fddd49a2032aabf17ec8ebf7d22c8088c666be5c197"),
ClearHeaderOctets: 12,
Data: mustHexDecode("ec46bb63b02520c33c49fd70b96b49e21d621741632875db7f6c9243d2d7c2"),
M: 10,
Nonce: mustHexDecode("005b8ccbcd9af83c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("47a65ac78b3d594227e85e71e882f1dbd38ce3eda7c23f04dd65071eb41342acdf7e00dccec7ae52987d"),
ClearHeaderOctets: 12,
Data: mustHexDecode("47a65ac78b3d594227e85e71e2fcfbb880442c731bf95167c8ffd7895e337076"),
M: 10,
Nonce: mustHexDecode("003ebe94044b9a3c9696766cfa"),
},
{
AESKey: aesKey13to24,
CipherText: mustHexDecode("6e37a6ef546d955d34ab6059f32905b88a641b04b9c9ffb58cc390900f3da12ab16dce9e82efa16da62059"),
ClearHeaderOctets: 12,
Data: mustHexDecode("6e37a6ef546d955d34ab6059abf21c0b02feb88f856df4a37381bce3cc128517d4"),
M: 10,
Nonce: mustHexDecode("008d493b30ae8b3c9696766cfa"),
},
}
if len(cases) != 24 {
t.Fatalf("Expected %d test cases, got: %d", 24, len(cases))
t.FailNow()
}
for idx, c := range cases {
c := c
t.Run(fmt.Sprintf("packet vector #%d", idx+1), func(t *testing.T) {
t.Parallel()
blk, err := aes.NewCipher(c.AESKey)
if err != nil {
t.Fatalf("could not initialize AES block cipher from key: %v", err)
}
lccm, err := NewCCM(blk, c.M, len(c.Nonce))
if err != nil {
t.Fatalf("could not create CCM: %v", err)
}
t.Run("seal", func(t *testing.T) {
var dst []byte
dst = lccm.Seal(dst, c.Nonce, c.Data[c.ClearHeaderOctets:], c.Data[:c.ClearHeaderOctets])
if !bytes.Equal(c.CipherText[c.ClearHeaderOctets:], dst) {
t.Fatalf("ciphertext does not match, wanted %v, got %v",
c.CipherText[c.ClearHeaderOctets:], dst)
}
})
t.Run("open", func(t *testing.T) {
var dst []byte
dst, err = lccm.Open(dst, c.Nonce, c.CipherText[c.ClearHeaderOctets:], c.CipherText[:c.ClearHeaderOctets])
if err != nil {
t.Fatalf("failed to unseal: %v", err)
}
if !bytes.Equal(c.Data[c.ClearHeaderOctets:], dst) {
t.Fatalf("plaintext does not match, wanted %v, got %v",
c.Data[c.ClearHeaderOctets:], dst)
}
})
})
}
}
func TestNewCCMError(t *testing.T) {
cases := map[string]struct {
vector
err error
}{
"ShortNonceLength": {
vector{
AESKey: aesKey1to12,
M: 8,
Nonce: mustHexDecode("a0a1a2a3a4a5"),
}, errInvalidNonceSize,
},
"LongNonceLength": {
vector{
AESKey: aesKey1to12,
M: 8,
Nonce: mustHexDecode("0001020304050607080910111213"),
}, errInvalidNonceSize,
},
"ShortTag": {
vector{
AESKey: aesKey1to12,
M: 3,
Nonce: mustHexDecode("00010203040506070809101112"),
}, errInvalidTagSize,
},
"LongTag": {
vector{
AESKey: aesKey1to12,
M: 17,
Nonce: mustHexDecode("00010203040506070809101112"),
}, errInvalidTagSize,
},
}
for name, c := range cases {
c := c
t.Run(name, func(t *testing.T) {
blk, err := aes.NewCipher(c.AESKey)
if err != nil {
t.Fatalf("could not initialize AES block cipher from key: %v", err)
}
if _, err := NewCCM(blk, c.M, len(c.Nonce)); !errors.Is(err, c.err) {
t.Fatalf("expected error '%v', got '%v'", c.err, err)
}
})
}
}
func TestSealError(t *testing.T) {
cases := map[string]struct {
vector
err error
}{
"InvalidNonceLength": {
vector{
Data: mustHexDecode("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e"),
M: 8,
Nonce: mustHexDecode("00000003020100a0a1a2a3a4"), // short
}, errInvalidNonceSize,
},
"PlaintextTooLong": {
vector{
Data: make([]byte, 100000),
M: 8,
Nonce: mustHexDecode("00000003020100a0a1a2a3a4a5"),
}, errPlaintextTooLong,
},
}
blk, err := aes.NewCipher(aesKey1to12)
if err != nil {
t.Fatalf("could not initialize AES block cipher from key: %v", err)
}
lccm, err := NewCCM(blk, 8, 13)
if err != nil {
t.Fatalf("could not create CCM: %v", err)
}
for name, c := range cases {
c := c
t.Run(name, func(t *testing.T) {
defer func() {
if err := recover(); !errors.Is(err.(error), c.err) {
t.Errorf("expected panic '%v', got '%v'", c.err, err)
}
}()
var dst []byte
_ = lccm.Seal(dst, c.Nonce, c.Data[c.ClearHeaderOctets:], c.Data[:c.ClearHeaderOctets])
})
}
}
func TestOpenError(t *testing.T) {
cases := map[string]struct {
vector
err error
}{
"CiphertextTooShort": {
vector{
CipherText: make([]byte, 10),
ClearHeaderOctets: 8,
Nonce: mustHexDecode("00000003020100a0a1a2a3a4a5"),
}, errCiphertextTooShort,
},
"CiphertextTooLong": {
vector{
CipherText: make([]byte, 100000),
ClearHeaderOctets: 8,
Nonce: mustHexDecode("00000003020100a0a1a2a3a4a5"),
}, errCiphertextTooLong,
},
}
blk, err := aes.NewCipher(aesKey1to12)
if err != nil {
t.Fatalf("could not initialize AES block cipher from key: %v", err)
}
lccm, err := NewCCM(blk, 8, 13)
if err != nil {
t.Fatalf("could not create CCM: %v", err)
}
for name, c := range cases {
c := c
t.Run(name, func(t *testing.T) {
var dst []byte
_, err = lccm.Open(dst, c.Nonce, c.CipherText[c.ClearHeaderOctets:], c.CipherText[:c.ClearHeaderOctets])
if !errors.Is(err, c.err) {
t.Errorf("expected error '%v', got '%v'", c.err, err)
}
})
}
}