ChatGPT-Next-Web/app/client/platforms/bedrock.ts

270 lines
8.3 KiB
TypeScript

import { ChatOptions, LLMApi, SpeechOptions } from "../api";
import {
useAppConfig,
usePluginStore,
useChatStore,
useAccessStore,
ChatMessageTool,
} from "../../store";
import { preProcessImageContent, stream } from "../../utils/chat";
import { getMessageTextContent, isVisionModel } from "../../utils";
const ClaudeMapper = {
assistant: "assistant",
user: "user",
system: "user",
} as const;
interface ToolDefinition {
function?: {
name: string;
description?: string;
parameters?: any;
};
}
export class BedrockApi implements LLMApi {
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Speech not implemented for Bedrock.");
}
extractMessage(res: any) {
if (res?.content?.[0]?.text) return res.content[0].text;
if (res?.messages?.[0]?.content?.[0]?.text)
return res.messages[0].content[0].text;
if (res?.delta?.text) return res.delta.text;
return "";
}
async chat(options: ChatOptions) {
const visionModel = isVisionModel(options.config.model);
const isClaude3 = options.config.model.startsWith("anthropic.claude-3");
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
model: options.config.model,
};
let systemMessage = "";
const messages = [];
for (const msg of options.messages) {
const content = await preProcessImageContent(msg.content);
if (msg.role === "system") {
systemMessage = getMessageTextContent(msg);
} else {
messages.push({ role: msg.role, content });
}
}
const formattedMessages = messages
.filter(
(v) => v.content && (typeof v.content !== "string" || v.content.trim()),
)
.map((v) => {
const { role, content } = v;
const insideRole = ClaudeMapper[role] ?? "user";
if (!visionModel || typeof content === "string") {
return {
role: insideRole,
content: [{ type: "text", text: getMessageTextContent(v) }],
};
}
return {
role: insideRole,
content: content
.filter((v) => v.image_url || v.text)
.map(({ type, text, image_url }) => {
if (type === "text") return { type, text: text! };
const { url = "" } = image_url || {};
const colonIndex = url.indexOf(":");
const semicolonIndex = url.indexOf(";");
const comma = url.indexOf(",");
return {
type: "image",
source: {
type: url.slice(semicolonIndex + 1, comma),
media_type: url.slice(colonIndex + 1, semicolonIndex),
data: url.slice(comma + 1),
},
};
}),
};
});
const requestBody = {
anthropic_version: "bedrock-2023-05-31",
max_tokens: modelConfig.max_tokens,
messages: formattedMessages,
...(systemMessage && { system: systemMessage }),
...(modelConfig.temperature !== undefined && {
temperature: modelConfig.temperature,
}),
...(modelConfig.top_p !== undefined && { top_p: modelConfig.top_p }),
...(isClaude3 && { top_k: 5 }),
};
const controller = new AbortController();
options.onController?.(controller);
const accessStore = useAccessStore.getState();
if (!accessStore.isValidBedrock()) {
throw new Error(
"Invalid AWS credentials. Please check your configuration.",
);
}
try {
const apiEndpoint = "/api/bedrock/chat";
const headers = {
"Content-Type": "application/json",
"X-Region": accessStore.awsRegion,
"X-Access-Key": accessStore.awsAccessKey,
"X-Secret-Key": accessStore.awsSecretKey,
"X-Model-Id": modelConfig.model,
...(accessStore.awsSessionToken && {
"X-Session-Token": accessStore.awsSessionToken,
}),
};
if (options.config.stream) {
let index = -1;
let currentToolArgs = "";
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
apiEndpoint,
requestBody,
headers,
(tools as ToolDefinition[]).map((tool) => ({
name: tool?.function?.name,
description: tool?.function?.description,
input_schema: tool?.function?.parameters,
})),
funcs,
controller,
(text: string, runTools: ChatMessageTool[]) => {
try {
const chunkJson = JSON.parse(text);
if (chunkJson?.content_block?.type === "tool_use") {
index += 1;
currentToolArgs = "";
const id = chunkJson.content_block?.id;
const name = chunkJson.content_block?.name;
if (id && name) {
runTools.push({
id,
type: "function",
function: { name, arguments: "" },
});
}
} else if (
chunkJson?.delta?.type === "input_json_delta" &&
chunkJson.delta?.partial_json
) {
currentToolArgs += chunkJson.delta.partial_json;
try {
JSON.parse(currentToolArgs);
if (index >= 0 && index < runTools.length) {
runTools[index].function!.arguments = currentToolArgs;
}
} catch (e) {}
} else if (
chunkJson?.type === "content_block_stop" &&
currentToolArgs &&
index >= 0 &&
index < runTools.length
) {
try {
if (currentToolArgs.trim().endsWith(",")) {
currentToolArgs = currentToolArgs.slice(0, -1) + "}";
} else if (!currentToolArgs.endsWith("}")) {
currentToolArgs += "}";
}
JSON.parse(currentToolArgs);
runTools[index].function!.arguments = currentToolArgs;
} catch (e) {}
}
return this.extractMessage(chunkJson);
} catch (e) {
return "";
}
},
(
requestPayload: any,
toolCallMessage: any,
toolCallResult: any[],
) => {
index = -1;
currentToolArgs = "";
if (requestPayload?.messages) {
requestPayload.messages.splice(
requestPayload.messages.length,
0,
{
role: "assistant",
content: [
{
type: "text",
text: JSON.stringify(
toolCallMessage.tool_calls.map(
(tool: ChatMessageTool) => ({
type: "tool_use",
id: tool.id,
name: tool?.function?.name,
input: tool?.function?.arguments
? JSON.parse(tool?.function?.arguments)
: {},
}),
),
),
},
],
},
...toolCallResult.map((result) => ({
role: "user",
content: [
{
type: "text",
text: `Tool '${result.tool_call_id}' returned: ${result.content}`,
},
],
})),
);
}
},
options,
);
} else {
const res = await fetch(apiEndpoint, {
method: "POST",
headers,
body: JSON.stringify(requestBody),
});
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
options.onError?.(e as Error);
}
}
async usage() {
return { used: 0, total: 0 };
}
async models() {
return [];
}
}