ChatGPT-Next-Web/app/client/platforms/anthropic.ts

412 lines
12 KiB
TypeScript

import { Anthropic, ApiPath } from "@/app/constant";
import { ChatOptions, getHeaders, LLMApi } from "../api";
import {
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
ChatMessageTool,
} from "@/app/store";
import { getClientConfig } from "@/app/config/client";
import { DEFAULT_API_HOST } from "@/app/constant";
import { getMessageTextContent, isVisionModel } from "@/app/utils";
import { preProcessImageContent, stream } from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { RequestPayload } from "./openai";
export type MultiBlockContent = {
type: "image" | "text";
source?: {
type: string;
media_type: string;
data: string;
};
text?: string;
};
export type AnthropicMessage = {
role: (typeof ClaudeMapper)[keyof typeof ClaudeMapper];
content: string | MultiBlockContent[];
};
export interface AnthropicChatRequest {
model: string; // The model that will complete your prompt.
messages: AnthropicMessage[]; // The prompt that you want Claude to complete.
max_tokens: number; // The maximum number of tokens to generate before stopping.
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
temperature?: number; // Amount of randomness injected into the response.
top_p?: number; // Use nucleus sampling.
top_k?: number; // Only sample from the top K options for each subsequent token.
metadata?: object; // An object describing metadata about the request.
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
}
export interface ChatRequest {
model: string; // The model that will complete your prompt.
prompt: string; // The prompt that you want Claude to complete.
max_tokens_to_sample: number; // The maximum number of tokens to generate before stopping.
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
temperature?: number; // Amount of randomness injected into the response.
top_p?: number; // Use nucleus sampling.
top_k?: number; // Only sample from the top K options for each subsequent token.
metadata?: object; // An object describing metadata about the request.
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
}
export interface ChatResponse {
completion: string;
stop_reason: "stop_sequence" | "max_tokens";
model: string;
}
export type ChatStreamResponse = ChatResponse & {
stop?: string;
log_id: string;
};
const ClaudeMapper = {
assistant: "assistant",
user: "user",
system: "user",
} as const;
const keys = ["claude-2, claude-instant-1"];
export class ClaudeApi implements LLMApi {
extractMessage(res: any) {
console.log("[Response] claude response: ", res);
return res?.content?.[0]?.text;
}
async chat(options: ChatOptions): Promise<void> {
const visionModel = isVisionModel(options.config.model);
const accessStore = useAccessStore.getState();
const shouldStream = !!options.config.stream;
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
},
};
// try get base64image from local cache image_url
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = await preProcessImageContent(v.content);
messages.push({ role: v.role, content });
}
const keys = ["system", "user"];
// roles must alternate between "user" and "assistant" in claude, so add a fake assistant message between two user messages
for (let i = 0; i < messages.length - 1; i++) {
const message = messages[i];
const nextMessage = messages[i + 1];
if (keys.includes(message.role) && keys.includes(nextMessage.role)) {
messages[i] = [
message,
{
role: "assistant",
content: ";",
},
] as any;
}
}
const prompt = messages
.flat()
.filter((v) => {
if (!v.content) return false;
if (typeof v.content === "string" && !v.content.trim()) return false;
return true;
})
.map((v) => {
const { role, content } = v;
const insideRole = ClaudeMapper[role] ?? "user";
if (!visionModel || typeof content === "string") {
return {
role: insideRole,
content: getMessageTextContent(v),
};
}
return {
role: insideRole,
content: content
.filter((v) => v.image_url || v.text)
.map(({ type, text, image_url }) => {
if (type === "text") {
return {
type,
text: text!,
};
}
const { url = "" } = image_url || {};
const colonIndex = url.indexOf(":");
const semicolonIndex = url.indexOf(";");
const comma = url.indexOf(",");
const mimeType = url.slice(colonIndex + 1, semicolonIndex);
const encodeType = url.slice(semicolonIndex + 1, comma);
const data = url.slice(comma + 1);
return {
type: "image" as const,
source: {
type: encodeType,
media_type: mimeType,
data,
},
};
}),
};
});
if (prompt[0]?.role === "assistant") {
prompt.unshift({
role: "user",
content: ";",
});
}
const requestBody: AnthropicChatRequest = {
messages: prompt,
stream: shouldStream,
model: modelConfig.model,
max_tokens: modelConfig.max_tokens,
temperature: modelConfig.temperature,
top_p: modelConfig.top_p,
// top_k: modelConfig.top_k,
top_k: 5,
};
const path = this.path(Anthropic.ChatPath);
const controller = new AbortController();
options.onController?.(controller);
if (shouldStream) {
let index = -1;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
path,
requestBody,
{
...getHeaders(),
"anthropic-version": accessStore.anthropicApiVersion,
},
// @ts-ignore
tools.map((tool) => ({
name: tool?.function?.name,
description: tool?.function?.description,
input_schema: tool?.function?.parameters,
})),
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
let chunkJson:
| undefined
| {
type: "content_block_delta" | "content_block_stop";
content_block?: {
type: "tool_use";
id: string;
name: string;
};
delta?: {
type: "text_delta" | "input_json_delta";
text?: string;
partial_json?: string;
};
index: number;
};
chunkJson = JSON.parse(text);
if (chunkJson?.content_block?.type == "tool_use") {
index += 1;
const id = chunkJson?.content_block.id;
const name = chunkJson?.content_block.name;
runTools.push({
id,
type: "function",
function: {
name,
arguments: "",
},
});
}
if (
chunkJson?.delta?.type == "input_json_delta" &&
chunkJson?.delta?.partial_json
) {
// @ts-ignore
runTools[index]["function"]["arguments"] +=
chunkJson?.delta?.partial_json;
}
return chunkJson?.delta?.text;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// reset index value
index = -1;
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
{
role: "assistant",
content: toolCallMessage.tool_calls.map(
(tool: ChatMessageTool) => ({
type: "tool_use",
id: tool.id,
name: tool?.function?.name,
input: tool?.function?.arguments
? JSON.parse(tool?.function?.arguments)
: {},
}),
),
},
// @ts-ignore
...toolCallResult.map((result) => ({
role: "user",
content: [
{
type: "tool_result",
tool_use_id: result.tool_call_id,
content: result.content,
},
],
})),
);
},
options,
);
} else {
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: {
...getHeaders(), // get common headers
"anthropic-version": accessStore.anthropicApiVersion,
// do not send `anthropicApiKey` in browser!!!
// Authorization: getAuthKey(accessStore.anthropicApiKey),
},
};
try {
controller.signal.onabort = () => options.onFinish("");
const res = await fetch(path, payload);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
} catch (e) {
console.error("failed to chat", e);
options.onError?.(e as Error);
}
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models() {
// const provider = {
// id: "anthropic",
// providerName: "Anthropic",
// providerType: "anthropic",
// };
return [
// {
// name: "claude-instant-1.2",
// available: true,
// provider,
// },
// {
// name: "claude-2.0",
// available: true,
// provider,
// },
// {
// name: "claude-2.1",
// available: true,
// provider,
// },
// {
// name: "claude-3-opus-20240229",
// available: true,
// provider,
// },
// {
// name: "claude-3-sonnet-20240229",
// available: true,
// provider,
// },
// {
// name: "claude-3-haiku-20240307",
// available: true,
// provider,
// },
];
}
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl: string = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.anthropicUrl;
}
// if endpoint is empty, use default endpoint
if (baseUrl.trim().length === 0) {
const isApp = !!getClientConfig()?.isApp;
baseUrl = isApp
? DEFAULT_API_HOST + "/api/proxy/anthropic"
: ApiPath.Anthropic;
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith("/api")) {
baseUrl = "https://" + baseUrl;
}
baseUrl = trimEnd(baseUrl, "/");
// try rebuild url, when using cloudflare ai gateway in client
return cloudflareAIGatewayUrl(`${baseUrl}/${path}`);
}
}
function trimEnd(s: string, end = " ") {
if (end.length === 0) return s;
while (s.endsWith(end)) {
s = s.slice(0, -end.length);
}
return s;
}