ChatGPT-Next-Web/app/utils/chat.ts

145 lines
3.9 KiB
TypeScript

import { CACHE_URL_PREFIX, UPLOAD_URL } from "@/app/constant";
import { RequestMessage } from "@/app/client/api";
export function compressImage(file: Blob, maxSize: number): Promise<string> {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onload = (readerEvent: any) => {
const image = new Image();
image.onload = () => {
let canvas = document.createElement("canvas");
let ctx = canvas.getContext("2d");
let width = image.width;
let height = image.height;
let quality = 0.9;
let dataUrl;
do {
canvas.width = width;
canvas.height = height;
ctx?.clearRect(0, 0, canvas.width, canvas.height);
ctx?.drawImage(image, 0, 0, width, height);
dataUrl = canvas.toDataURL("image/jpeg", quality);
if (dataUrl.length < maxSize) break;
if (quality > 0.5) {
// Prioritize quality reduction
quality -= 0.1;
} else {
// Then reduce the size
width *= 0.9;
height *= 0.9;
}
} while (dataUrl.length > maxSize);
resolve(dataUrl);
};
image.onerror = reject;
image.src = readerEvent.target.result;
};
reader.onerror = reject;
if (file.type.includes("heic")) {
try {
const heic2any = require("heic2any");
heic2any({ blob: file, toType: "image/jpeg" })
.then((blob: Blob) => {
reader.readAsDataURL(blob);
})
.catch((e: any) => {
reject(e);
});
} catch (e) {
reject(e);
}
}
reader.readAsDataURL(file);
});
}
export async function preProcessImageContent(
content: RequestMessage["content"],
) {
if (typeof content === "string") {
return content;
}
const result = [];
for (const part of content) {
if (part?.type == "image_url" && part?.image_url?.url) {
try {
const url = await cacheImageToBase64Image(part?.image_url?.url);
result.push({ type: part.type, image_url: { url } });
} catch (error) {
console.error("Error processing image URL:", error);
}
} else {
result.push({ ...part });
}
}
return result;
}
const imageCaches: Record<string, string> = {};
export function cacheImageToBase64Image(imageUrl: string) {
if (imageUrl.includes(CACHE_URL_PREFIX)) {
if (!imageCaches[imageUrl]) {
const reader = new FileReader();
return fetch(imageUrl, {
method: "GET",
mode: "cors",
credentials: "include",
})
.then((res) => res.blob())
.then(
async (blob) =>
(imageCaches[imageUrl] = await compressImage(blob, 256 * 1024)),
); // compressImage
}
return Promise.resolve(imageCaches[imageUrl]);
}
return Promise.resolve(imageUrl);
}
export function base64Image2Blob(base64Data: string, contentType: string) {
const byteCharacters = atob(base64Data);
const byteNumbers = new Array(byteCharacters.length);
for (let i = 0; i < byteCharacters.length; i++) {
byteNumbers[i] = byteCharacters.charCodeAt(i);
}
const byteArray = new Uint8Array(byteNumbers);
return new Blob([byteArray], { type: contentType });
}
export function uploadImage(file: File): Promise<string> {
if (!window._SW_ENABLED) {
// if serviceWorker register error, using compressImage
return compressImage(file, 256 * 1024);
}
const body = new FormData();
body.append("file", file);
return fetch(UPLOAD_URL, {
method: "post",
body,
mode: "cors",
credentials: "include",
})
.then((res) => res.json())
.then((res) => {
console.log("res", res);
if (res?.code == 0 && res?.data) {
return res?.data;
}
throw Error(`upload Error: ${res?.msg}`);
});
}
export function removeImage(imageUrl: string) {
return fetch(imageUrl, {
method: "DELETE",
mode: "cors",
credentials: "include",
});
}