ChatGPT-Next-Web/app/client/providers/anthropic/index.ts

357 lines
9.5 KiB
TypeScript

import {
ANTHROPIC_BASE_URL,
AnthropicMetas,
ClaudeMapper,
SettingKeys,
modelConfigs,
preferredRegion,
settingItems,
} from "./config";
import {
ChatHandlers,
InternalChatRequestPayload,
IProviderTemplate,
ServerConfig,
} from "../../common";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import Locale from "@/app/locales";
import {
prettyObject,
getTimer,
authHeaderName,
auth,
parseResp,
formatMessage,
} from "./utils";
import { cloneDeep } from "lodash-es";
import { NextRequest, NextResponse } from "next/server";
export type AnthropicProviderSettingKeys = SettingKeys;
export type MultiBlockContent = {
type: "image" | "text";
source?: {
type: string;
media_type: string;
data: string;
};
text?: string;
};
export type AnthropicMessage = {
role: (typeof ClaudeMapper)[keyof typeof ClaudeMapper];
content: string | MultiBlockContent[];
};
export interface AnthropicChatRequest {
model: string; // The model that will complete your prompt.
messages: AnthropicMessage[]; // The prompt that you want Claude to complete.
max_tokens: number; // The maximum number of tokens to generate before stopping.
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
temperature?: number; // Amount of randomness injected into the response.
top_p?: number; // Use nucleus sampling.
top_k?: number; // Only sample from the top K options for each subsequent token.
metadata?: object; // An object describing metadata about the request.
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
}
export interface ChatRequest {
model: string; // The model that will complete your prompt.
prompt: string; // The prompt that you want Claude to complete.
max_tokens_to_sample: number; // The maximum number of tokens to generate before stopping.
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
temperature?: number; // Amount of randomness injected into the response.
top_p?: number; // Use nucleus sampling.
top_k?: number; // Only sample from the top K options for each subsequent token.
metadata?: object; // An object describing metadata about the request.
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
}
type ProviderTemplate = IProviderTemplate<
SettingKeys,
"anthropic",
typeof AnthropicMetas
>;
export default class AnthropicProvider implements ProviderTemplate {
apiRouteRootName = "/api/provider/anthropic" as const;
allowedApiMethods: ["GET", "POST"] = ["GET", "POST"];
runtime = "edge" as const;
preferredRegion = preferredRegion;
name = "anthropic" as const;
metas = AnthropicMetas;
providerMeta = {
displayName: "Anthropic",
settingItems: settingItems(
`${this.apiRouteRootName}//${AnthropicMetas.ChatPath}`,
),
};
defaultModels = modelConfigs;
private formatChatPayload(payload: InternalChatRequestPayload<SettingKeys>) {
const {
messages: outsideMessages,
model,
stream,
modelConfig,
providerConfig,
} = payload;
const { anthropicApiKey, anthropicApiVersion, anthropicUrl } =
providerConfig;
const { temperature, top_p, max_tokens } = modelConfig;
const keys = ["system", "user"];
// roles must alternate between "user" and "assistant" in claude, so add a fake assistant message between two user messages
const messages = cloneDeep(outsideMessages);
for (let i = 0; i < messages.length - 1; i++) {
const message = messages[i];
const nextMessage = messages[i + 1];
if (keys.includes(message.role) && keys.includes(nextMessage.role)) {
messages[i] = [
message,
{
role: "assistant",
content: ";",
},
] as any;
}
}
const prompt = formatMessage(messages, payload.isVisionModel);
const requestBody: AnthropicChatRequest = {
messages: prompt,
stream,
model,
max_tokens,
temperature,
top_p,
top_k: 5,
};
return {
headers: {
"Content-Type": "application/json",
Accept: "application/json",
[authHeaderName]: anthropicApiKey ?? "",
"anthropic-version": anthropicApiVersion ?? "",
},
body: JSON.stringify(requestBody),
method: "POST",
url: anthropicUrl!,
};
}
private async request(req: NextRequest, serverConfig: ServerConfig) {
const controller = new AbortController();
const authValue = req.headers.get(authHeaderName) ?? "";
const path = `${req.nextUrl.pathname}`.replaceAll(
this.apiRouteRootName,
"",
);
const baseUrl = serverConfig.anthropicUrl || ANTHROPIC_BASE_URL;
console.log("[Proxy] ", path);
console.log("[Base Url]", baseUrl);
const timeoutId = setTimeout(
() => {
controller.abort();
},
10 * 60 * 1000,
);
const fetchUrl = `${baseUrl}${path}`;
const fetchOptions: RequestInit = {
headers: {
"Content-Type": "application/json",
"Cache-Control": "no-store",
[authHeaderName]: authValue,
"anthropic-version":
req.headers.get("anthropic-version") ||
serverConfig.anthropicApiVersion ||
AnthropicMetas.Vision,
},
method: req.method,
body: req.body,
redirect: "manual",
// @ts-ignore
duplex: "half",
signal: controller.signal,
};
console.log("[Anthropic request]", fetchOptions.headers, req.method);
try {
const res = await fetch(fetchUrl, fetchOptions);
// to prevent browser prompt for credentials
const newHeaders = new Headers(res.headers);
newHeaders.delete("www-authenticate");
// to disable nginx buffering
newHeaders.set("X-Accel-Buffering", "no");
return new NextResponse(res.body, {
status: res.status,
statusText: res.statusText,
headers: newHeaders,
});
} finally {
clearTimeout(timeoutId);
}
}
async chat(
payload: InternalChatRequestPayload<SettingKeys>,
fetch: typeof window.fetch,
) {
const requestPayload = this.formatChatPayload(payload);
const timer = getTimer();
const res = await fetch(requestPayload.url, {
headers: {
...requestPayload.headers,
},
body: requestPayload.body,
method: requestPayload.method,
signal: timer.signal,
});
timer.clear();
const resJson = await res.json();
const message = parseResp(resJson);
return message;
}
streamChat(
payload: InternalChatRequestPayload<SettingKeys>,
handlers: ChatHandlers,
fetch: typeof window.fetch,
) {
const requestPayload = this.formatChatPayload(payload);
const timer = getTimer();
fetchEventSource(requestPayload.url, {
...requestPayload,
fetch,
async onopen(res) {
timer.clear();
const contentType = res.headers.get("content-type");
console.log("[OpenAI] request response content type: ", contentType);
if (contentType?.startsWith("text/plain")) {
const responseText = await res.clone().text();
return handlers.onFlash(responseText);
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [];
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (extraInfo) {
responseTexts.push(extraInfo);
}
const responseText = responseTexts.join("\n\n");
return handlers.onFlash(responseText);
}
},
onmessage(msg) {
if (msg.data === "[DONE]") {
return;
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
if (delta) {
handlers.onProgress(delta);
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
handlers.onFinish();
},
onerror(e) {
handlers.onError(e);
throw e;
},
openWhenHidden: true,
});
return timer;
}
serverSideRequestHandler: ProviderTemplate["serverSideRequestHandler"] =
async (req, config) => {
const { subpath } = req;
const ALLOWD_PATH = [AnthropicMetas.ChatPath];
if (!ALLOWD_PATH.includes(subpath)) {
console.log("[Anthropic Route] forbidden path ", subpath);
return NextResponse.json(
{
error: true,
message: "you are not allowed to request " + subpath,
},
{
status: 403,
},
);
}
const authResult = auth(req, config);
if (authResult.error) {
return NextResponse.json(authResult, {
status: 401,
});
}
try {
const response = await this.request(req, config);
return response;
} catch (e) {
console.error("[Anthropic] ", e);
return NextResponse.json(prettyObject(e));
}
};
}