mirror of
https://github.com/Yidadaa/ChatGPT-Next-Web.git
synced 2025-09-04 06:16:54 +08:00
333 lines
9.0 KiB
TypeScript
333 lines
9.0 KiB
TypeScript
import {
|
|
AnthropicMetas,
|
|
ClaudeMapper,
|
|
SettingKeys,
|
|
modelConfigs,
|
|
settingItems,
|
|
} from "./config";
|
|
import {
|
|
ChatHandlers,
|
|
InternalChatRequestPayload,
|
|
IProviderTemplate,
|
|
getMessageTextContent,
|
|
RequestMessage,
|
|
} from "../../common";
|
|
import {
|
|
EventStreamContentType,
|
|
fetchEventSource,
|
|
} from "@fortaine/fetch-event-source";
|
|
import Locale from "@/app/locales";
|
|
import { getAuthKey, trimEnd, prettyObject } from "./utils";
|
|
import { cloneDeep } from "lodash-es";
|
|
|
|
export type AnthropicProviderSettingKeys = SettingKeys;
|
|
|
|
export type MultiBlockContent = {
|
|
type: "image" | "text";
|
|
source?: {
|
|
type: string;
|
|
media_type: string;
|
|
data: string;
|
|
};
|
|
text?: string;
|
|
};
|
|
|
|
export type AnthropicMessage = {
|
|
role: (typeof ClaudeMapper)[keyof typeof ClaudeMapper];
|
|
content: string | MultiBlockContent[];
|
|
};
|
|
|
|
export interface AnthropicChatRequest {
|
|
model: string; // The model that will complete your prompt.
|
|
messages: AnthropicMessage[]; // The prompt that you want Claude to complete.
|
|
max_tokens: number; // The maximum number of tokens to generate before stopping.
|
|
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
|
|
temperature?: number; // Amount of randomness injected into the response.
|
|
top_p?: number; // Use nucleus sampling.
|
|
top_k?: number; // Only sample from the top K options for each subsequent token.
|
|
metadata?: object; // An object describing metadata about the request.
|
|
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
|
|
}
|
|
|
|
export interface ChatRequest {
|
|
model: string; // The model that will complete your prompt.
|
|
prompt: string; // The prompt that you want Claude to complete.
|
|
max_tokens_to_sample: number; // The maximum number of tokens to generate before stopping.
|
|
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
|
|
temperature?: number; // Amount of randomness injected into the response.
|
|
top_p?: number; // Use nucleus sampling.
|
|
top_k?: number; // Only sample from the top K options for each subsequent token.
|
|
metadata?: object; // An object describing metadata about the request.
|
|
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
|
|
}
|
|
|
|
export default class AnthropicProvider
|
|
implements IProviderTemplate<SettingKeys, "anthropic", typeof AnthropicMetas>
|
|
{
|
|
name = "anthropic" as const;
|
|
|
|
metas = AnthropicMetas;
|
|
|
|
providerMeta = {
|
|
displayName: "Anthropic",
|
|
settingItems,
|
|
};
|
|
|
|
defaultModels = modelConfigs;
|
|
|
|
readonly REQUEST_TIMEOUT_MS = 60000;
|
|
|
|
private path(payload: InternalChatRequestPayload<SettingKeys>) {
|
|
const {
|
|
providerConfig: { anthropicUrl },
|
|
} = payload;
|
|
|
|
return `${trimEnd(anthropicUrl!)}/${AnthropicMetas.ChatPath}`;
|
|
}
|
|
|
|
private formatMessage(
|
|
messages: RequestMessage[],
|
|
payload: InternalChatRequestPayload<SettingKeys>,
|
|
) {
|
|
const { isVisionModel } = payload;
|
|
|
|
return messages
|
|
.flat()
|
|
.filter((v) => {
|
|
if (!v.content) return false;
|
|
if (typeof v.content === "string" && !v.content.trim()) return false;
|
|
return true;
|
|
})
|
|
.map((v) => {
|
|
const { role, content } = v;
|
|
const insideRole = ClaudeMapper[role] ?? "user";
|
|
|
|
if (!isVisionModel || typeof content === "string") {
|
|
return {
|
|
role: insideRole,
|
|
content: getMessageTextContent(v),
|
|
};
|
|
}
|
|
return {
|
|
role: insideRole,
|
|
content: content
|
|
.filter((v) => v.image_url || v.text)
|
|
.map(({ type, text, image_url }) => {
|
|
if (type === "text") {
|
|
return {
|
|
type,
|
|
text: text!,
|
|
};
|
|
}
|
|
const { url = "" } = image_url || {};
|
|
const colonIndex = url.indexOf(":");
|
|
const semicolonIndex = url.indexOf(";");
|
|
const comma = url.indexOf(",");
|
|
|
|
const mimeType = url.slice(colonIndex + 1, semicolonIndex);
|
|
const encodeType = url.slice(semicolonIndex + 1, comma);
|
|
const data = url.slice(comma + 1);
|
|
|
|
return {
|
|
type: "image" as const,
|
|
source: {
|
|
type: encodeType,
|
|
media_type: mimeType,
|
|
data,
|
|
},
|
|
};
|
|
}),
|
|
};
|
|
});
|
|
}
|
|
|
|
private formatChatPayload(payload: InternalChatRequestPayload<SettingKeys>) {
|
|
const {
|
|
messages: outsideMessages,
|
|
model,
|
|
stream,
|
|
modelConfig,
|
|
providerConfig,
|
|
} = payload;
|
|
const { anthropicApiKey, anthropicApiVersion } = providerConfig;
|
|
const { temperature, top_p, max_tokens } = modelConfig;
|
|
|
|
const keys = ["system", "user"];
|
|
|
|
// roles must alternate between "user" and "assistant" in claude, so add a fake assistant message between two user messages
|
|
const messages = cloneDeep(outsideMessages);
|
|
|
|
for (let i = 0; i < messages.length - 1; i++) {
|
|
const message = messages[i];
|
|
const nextMessage = messages[i + 1];
|
|
|
|
if (keys.includes(message.role) && keys.includes(nextMessage.role)) {
|
|
messages[i] = [
|
|
message,
|
|
{
|
|
role: "assistant",
|
|
content: ";",
|
|
},
|
|
] as any;
|
|
}
|
|
}
|
|
|
|
const prompt = this.formatMessage(messages, payload);
|
|
|
|
const requestBody: AnthropicChatRequest = {
|
|
messages: prompt,
|
|
stream,
|
|
model,
|
|
max_tokens,
|
|
temperature,
|
|
top_p,
|
|
top_k: 5,
|
|
};
|
|
|
|
return {
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
Accept: "application/json",
|
|
"x-api-key": anthropicApiKey ?? "",
|
|
"anthropic-version": anthropicApiVersion ?? "",
|
|
Authorization: getAuthKey(anthropicApiKey),
|
|
},
|
|
body: JSON.stringify(requestBody),
|
|
method: "POST",
|
|
url: this.path(payload),
|
|
};
|
|
}
|
|
|
|
private readWholeMessageResponseBody(res: any) {
|
|
return {
|
|
message: res?.content?.[0]?.text ?? "",
|
|
};
|
|
}
|
|
|
|
private getTimer = (onabort: () => void = () => {}) => {
|
|
const controller = new AbortController();
|
|
|
|
// make a fetch request
|
|
const requestTimeoutId = setTimeout(
|
|
() => controller.abort(),
|
|
this.REQUEST_TIMEOUT_MS,
|
|
);
|
|
|
|
controller.signal.onabort = onabort;
|
|
|
|
return {
|
|
...controller,
|
|
clear: () => {
|
|
clearTimeout(requestTimeoutId);
|
|
},
|
|
};
|
|
};
|
|
|
|
async chat(payload: InternalChatRequestPayload<SettingKeys>) {
|
|
const requestPayload = this.formatChatPayload(payload);
|
|
|
|
const timer = this.getTimer();
|
|
|
|
// make a fetch request
|
|
const requestTimeoutId = setTimeout(
|
|
() => timer.abort(),
|
|
this.REQUEST_TIMEOUT_MS,
|
|
);
|
|
|
|
const res = await fetch(requestPayload.url, {
|
|
headers: {
|
|
...requestPayload.headers,
|
|
},
|
|
body: requestPayload.body,
|
|
method: requestPayload.method,
|
|
signal: timer.signal,
|
|
});
|
|
|
|
timer.clear();
|
|
|
|
const resJson = await res.json();
|
|
const message = this.readWholeMessageResponseBody(resJson);
|
|
|
|
return message;
|
|
}
|
|
|
|
streamChat(
|
|
payload: InternalChatRequestPayload<SettingKeys>,
|
|
handlers: ChatHandlers,
|
|
) {
|
|
const requestPayload = this.formatChatPayload(payload);
|
|
|
|
const timer = this.getTimer();
|
|
|
|
fetchEventSource(requestPayload.url, {
|
|
...requestPayload,
|
|
async onopen(res) {
|
|
timer.clear();
|
|
const contentType = res.headers.get("content-type");
|
|
console.log("[OpenAI] request response content type: ", contentType);
|
|
|
|
if (contentType?.startsWith("text/plain")) {
|
|
const responseText = await res.clone().text();
|
|
return handlers.onFlash(responseText);
|
|
}
|
|
|
|
if (
|
|
!res.ok ||
|
|
!res.headers
|
|
.get("content-type")
|
|
?.startsWith(EventStreamContentType) ||
|
|
res.status !== 200
|
|
) {
|
|
const responseTexts = [];
|
|
if (res.status === 401) {
|
|
responseTexts.push(Locale.Error.Unauthorized);
|
|
}
|
|
|
|
let extraInfo = await res.clone().text();
|
|
try {
|
|
const resJson = await res.clone().json();
|
|
extraInfo = prettyObject(resJson);
|
|
} catch {}
|
|
|
|
if (extraInfo) {
|
|
responseTexts.push(extraInfo);
|
|
}
|
|
|
|
const responseText = responseTexts.join("\n\n");
|
|
|
|
return handlers.onFlash(responseText);
|
|
}
|
|
},
|
|
onmessage(msg) {
|
|
if (msg.data === "[DONE]") {
|
|
return;
|
|
}
|
|
const text = msg.data;
|
|
try {
|
|
const json = JSON.parse(text);
|
|
const choices = json.choices as Array<{
|
|
delta: { content: string };
|
|
}>;
|
|
const delta = choices[0]?.delta?.content;
|
|
|
|
if (delta) {
|
|
handlers.onProgress(delta);
|
|
}
|
|
} catch (e) {
|
|
console.error("[Request] parse error", text, msg);
|
|
}
|
|
},
|
|
onclose() {
|
|
handlers.onFinish();
|
|
},
|
|
onerror(e) {
|
|
handlers.onError(e);
|
|
throw e;
|
|
},
|
|
openWhenHidden: true,
|
|
});
|
|
|
|
return timer;
|
|
}
|
|
}
|