486 lines
14 KiB
TypeScript
486 lines
14 KiB
TypeScript
'use client';
|
||
import type {
|
||
ChatMessageTool,
|
||
} from '@/app/store';
|
||
import type { DalleQuality, DalleSize, DalleStyle } from '@/app/typing';
|
||
import type {
|
||
ChatOptions,
|
||
LLMApi,
|
||
LLMModel,
|
||
LLMUsage,
|
||
MultimodalContent,
|
||
SpeechOptions,
|
||
} from '../api';
|
||
import { getClientConfig } from '@/app/config/client';
|
||
// azure and openai, using same models. so using same LLMApi.
|
||
import {
|
||
ApiPath,
|
||
Azure,
|
||
DEFAULT_MODELS,
|
||
OPENAI_BASE_URL,
|
||
OpenaiPath,
|
||
REQUEST_TIMEOUT_MS,
|
||
ServiceProvider,
|
||
} from '@/app/constant';
|
||
import {
|
||
useAccessStore,
|
||
useAppConfig,
|
||
useChatStore,
|
||
usePluginStore,
|
||
} from '@/app/store';
|
||
import {
|
||
isDalle3 as _isDalle3,
|
||
getMessageTextContent,
|
||
isVisionModel,
|
||
} from '@/app/utils';
|
||
|
||
import {
|
||
base64Image2Blob,
|
||
preProcessImageContent,
|
||
stream,
|
||
uploadImage,
|
||
} from '@/app/utils/chat';
|
||
import { cloudflareAIGatewayUrl } from '@/app/utils/cloudflare';
|
||
import { collectModelsWithDefaultModel } from '@/app/utils/model';
|
||
import { fetch } from '@/app/utils/stream';
|
||
import Locale from '../../locales';
|
||
import {
|
||
getHeaders,
|
||
} from '../api';
|
||
|
||
export interface OpenAIListModelResponse {
|
||
object: string;
|
||
data: Array<{
|
||
id: string;
|
||
object: string;
|
||
root: string;
|
||
}>;
|
||
}
|
||
|
||
export interface RequestPayload {
|
||
messages: {
|
||
role: 'system' | 'user' | 'assistant';
|
||
content: string | MultimodalContent[];
|
||
}[];
|
||
stream?: boolean;
|
||
model: string;
|
||
temperature: number;
|
||
presence_penalty: number;
|
||
frequency_penalty: number;
|
||
top_p: number;
|
||
max_tokens?: number;
|
||
max_completion_tokens?: number;
|
||
}
|
||
|
||
export interface DalleRequestPayload {
|
||
model: string;
|
||
prompt: string;
|
||
response_format: 'url' | 'b64_json';
|
||
n: number;
|
||
size: DalleSize;
|
||
quality: DalleQuality;
|
||
style: DalleStyle;
|
||
}
|
||
|
||
export class ChatGPTApi implements LLMApi {
|
||
private disableListModels = true;
|
||
|
||
path(path: string): string {
|
||
const accessStore = useAccessStore.getState();
|
||
|
||
let baseUrl = '';
|
||
|
||
const isAzure = path.includes('deployments');
|
||
if (accessStore.useCustomConfig) {
|
||
if (isAzure && !accessStore.isValidAzure()) {
|
||
throw new Error(
|
||
'incomplete azure config, please check it in your settings page',
|
||
);
|
||
}
|
||
|
||
baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
|
||
}
|
||
|
||
if (baseUrl.length === 0) {
|
||
const isApp = !!getClientConfig()?.isApp;
|
||
const apiPath = isAzure ? ApiPath.Azure : ApiPath.OpenAI;
|
||
baseUrl = isApp ? OPENAI_BASE_URL : apiPath;
|
||
}
|
||
|
||
if (baseUrl.endsWith('/')) {
|
||
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
|
||
}
|
||
if (
|
||
!baseUrl.startsWith('http')
|
||
&& !isAzure
|
||
&& !baseUrl.startsWith(ApiPath.OpenAI)
|
||
) {
|
||
baseUrl = `https://${baseUrl}`;
|
||
}
|
||
|
||
console.log('[Proxy Endpoint] ', baseUrl, path);
|
||
|
||
// try rebuild url, when using cloudflare ai gateway in client
|
||
return cloudflareAIGatewayUrl([baseUrl, path].join('/'));
|
||
}
|
||
|
||
async extractMessage(res: any) {
|
||
if (res.error) {
|
||
return `\`\`\`\n${JSON.stringify(res, null, 4)}\n\`\`\``;
|
||
}
|
||
// dalle3 model return url, using url create image message
|
||
if (res.data) {
|
||
let url = res.data?.at(0)?.url ?? '';
|
||
const b64_json = res.data?.at(0)?.b64_json ?? '';
|
||
if (!url && b64_json) {
|
||
// uploadImage
|
||
url = await uploadImage(base64Image2Blob(b64_json, 'image/png'));
|
||
}
|
||
return [
|
||
{
|
||
type: 'image_url',
|
||
image_url: {
|
||
url,
|
||
},
|
||
},
|
||
];
|
||
}
|
||
return res.choices?.at(0)?.message?.content ?? res;
|
||
}
|
||
|
||
async speech(options: SpeechOptions): Promise<ArrayBuffer> {
|
||
const requestPayload = {
|
||
model: options.model,
|
||
input: options.input,
|
||
voice: options.voice,
|
||
response_format: options.response_format,
|
||
speed: options.speed,
|
||
};
|
||
|
||
console.log('[Request] openai speech payload: ', requestPayload);
|
||
|
||
const controller = new AbortController();
|
||
options.onController?.(controller);
|
||
|
||
try {
|
||
const speechPath = this.path(OpenaiPath.SpeechPath);
|
||
const speechPayload = {
|
||
method: 'POST',
|
||
body: JSON.stringify(requestPayload),
|
||
signal: controller.signal,
|
||
headers: getHeaders(),
|
||
};
|
||
|
||
// make a fetch request
|
||
const requestTimeoutId = setTimeout(
|
||
() => controller.abort(),
|
||
REQUEST_TIMEOUT_MS,
|
||
);
|
||
|
||
const res = await fetch(speechPath, speechPayload);
|
||
clearTimeout(requestTimeoutId);
|
||
return await res.arrayBuffer();
|
||
} catch (e) {
|
||
console.log('[Request] failed to make a speech request', e);
|
||
throw e;
|
||
}
|
||
}
|
||
|
||
async chat(options: ChatOptions) {
|
||
const modelConfig = {
|
||
...useAppConfig.getState().modelConfig,
|
||
...useChatStore.getState().currentSession().mask.modelConfig,
|
||
...{
|
||
model: options.config.model,
|
||
providerName: options.config.providerName,
|
||
},
|
||
};
|
||
|
||
let requestPayload: RequestPayload | DalleRequestPayload;
|
||
|
||
const isDalle3 = _isDalle3(options.config.model);
|
||
const isO1 = options.config.model.startsWith('o1');
|
||
if (isDalle3) {
|
||
const prompt = getMessageTextContent(
|
||
options.messages.slice(-1)?.pop() as any,
|
||
);
|
||
requestPayload = {
|
||
model: options.config.model,
|
||
prompt,
|
||
// URLs are only valid for 60 minutes after the image has been generated.
|
||
response_format: 'b64_json', // using b64_json, and save image in CacheStorage
|
||
n: 1,
|
||
size: options.config?.size ?? '1024x1024',
|
||
quality: options.config?.quality ?? 'standard',
|
||
style: options.config?.style ?? 'vivid',
|
||
};
|
||
} else {
|
||
const visionModel = isVisionModel(options.config.model);
|
||
const messages: ChatOptions['messages'] = [];
|
||
for (const v of options.messages) {
|
||
const content = visionModel
|
||
? await preProcessImageContent(v.content)
|
||
: getMessageTextContent(v);
|
||
if (!(isO1 && v.role === 'system'))
|
||
{ messages.push({ role: v.role, content }); }
|
||
}
|
||
|
||
// O1 not support image, tools (plugin in ChatGPTNextWeb) and system, stream, logprobs, temperature, top_p, n, presence_penalty, frequency_penalty yet.
|
||
requestPayload = {
|
||
messages,
|
||
stream: options.config.stream,
|
||
model: modelConfig.model,
|
||
temperature: !isO1 ? modelConfig.temperature : 1,
|
||
presence_penalty: !isO1 ? modelConfig.presence_penalty : 0,
|
||
frequency_penalty: !isO1 ? modelConfig.frequency_penalty : 0,
|
||
top_p: !isO1 ? modelConfig.top_p : 1,
|
||
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
|
||
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
|
||
};
|
||
|
||
// O1 使用 max_completion_tokens 控制token数 (https://platform.openai.com/docs/guides/reasoning#controlling-costs)
|
||
if (isO1) {
|
||
requestPayload.max_completion_tokens = modelConfig.max_tokens;
|
||
}
|
||
|
||
// add max_tokens to vision model
|
||
if (visionModel) {
|
||
requestPayload.max_tokens = Math.max(modelConfig.max_tokens, 4000);
|
||
}
|
||
}
|
||
|
||
console.log('[Request] openai payload: ', requestPayload);
|
||
|
||
const shouldStream = !isDalle3 && !!options.config.stream;
|
||
const controller = new AbortController();
|
||
options.onController?.(controller);
|
||
|
||
try {
|
||
let chatPath = '';
|
||
if (modelConfig.providerName === ServiceProvider.Azure) {
|
||
// find model, and get displayName as deployName
|
||
const { models: configModels, customModels: configCustomModels }
|
||
= useAppConfig.getState();
|
||
const {
|
||
defaultModel,
|
||
customModels: accessCustomModels,
|
||
useCustomConfig,
|
||
} = useAccessStore.getState();
|
||
const models = collectModelsWithDefaultModel(
|
||
configModels,
|
||
[configCustomModels, accessCustomModels].join(','),
|
||
defaultModel,
|
||
);
|
||
const model = models.find(
|
||
model =>
|
||
model.name === modelConfig.model
|
||
&& model?.provider?.providerName === ServiceProvider.Azure,
|
||
);
|
||
chatPath = this.path(
|
||
(isDalle3 ? Azure.ImagePath : Azure.ChatPath)(
|
||
(model?.displayName ?? model?.name) as string,
|
||
useCustomConfig ? useAccessStore.getState().azureApiVersion : '',
|
||
),
|
||
);
|
||
} else {
|
||
chatPath = this.path(
|
||
isDalle3 ? OpenaiPath.ImagePath : OpenaiPath.ChatPath,
|
||
);
|
||
}
|
||
if (shouldStream) {
|
||
let index = -1;
|
||
const [tools, funcs] = usePluginStore
|
||
.getState()
|
||
.getAsTools(
|
||
useChatStore.getState().currentSession().mask?.plugin || [],
|
||
);
|
||
// console.log("getAsTools", tools, funcs);
|
||
stream(
|
||
chatPath,
|
||
requestPayload,
|
||
getHeaders(),
|
||
tools as any,
|
||
funcs,
|
||
controller,
|
||
// parseSSE
|
||
(text: string, runTools: ChatMessageTool[]) => {
|
||
// console.log("parseSSE", text, runTools);
|
||
const json = JSON.parse(text);
|
||
const choices = json.choices as Array<{
|
||
delta: {
|
||
content: string;
|
||
tool_calls: ChatMessageTool[];
|
||
};
|
||
}>;
|
||
const tool_calls = choices[0]?.delta?.tool_calls;
|
||
if (tool_calls?.length > 0) {
|
||
const id = tool_calls[0]?.id;
|
||
const args = tool_calls[0]?.function?.arguments;
|
||
if (id) {
|
||
index += 1;
|
||
runTools.push({
|
||
id,
|
||
type: tool_calls[0]?.type,
|
||
function: {
|
||
name: tool_calls[0]?.function?.name as string,
|
||
arguments: args,
|
||
},
|
||
});
|
||
} else {
|
||
// @ts-ignore
|
||
runTools[index].function.arguments += args;
|
||
}
|
||
}
|
||
return choices[0]?.delta?.content;
|
||
},
|
||
// processToolMessage, include tool_calls message and tool call results
|
||
(
|
||
requestPayload: RequestPayload,
|
||
toolCallMessage: any,
|
||
toolCallResult: any[],
|
||
) => {
|
||
// reset index value
|
||
index = -1;
|
||
// @ts-ignore
|
||
requestPayload?.messages?.splice(
|
||
// @ts-ignore
|
||
requestPayload?.messages?.length,
|
||
0,
|
||
toolCallMessage,
|
||
...toolCallResult,
|
||
);
|
||
},
|
||
options,
|
||
);
|
||
} else {
|
||
const chatPayload = {
|
||
method: 'POST',
|
||
body: JSON.stringify(requestPayload),
|
||
signal: controller.signal,
|
||
headers: getHeaders(),
|
||
};
|
||
|
||
// make a fetch request
|
||
const requestTimeoutId = setTimeout(
|
||
() => controller.abort(),
|
||
isDalle3 || isO1 ? REQUEST_TIMEOUT_MS * 4 : REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
|
||
);
|
||
|
||
const res = await fetch(chatPath, chatPayload);
|
||
clearTimeout(requestTimeoutId);
|
||
|
||
const resJson = await res.json();
|
||
const message = await this.extractMessage(resJson);
|
||
options.onFinish(message, res);
|
||
}
|
||
} catch (e) {
|
||
console.log('[Request] failed to make a chat request', e);
|
||
options.onError?.(e as Error);
|
||
}
|
||
}
|
||
|
||
async usage() {
|
||
const formatDate = (d: Date) =>
|
||
`${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, '0')}-${d
|
||
.getDate()
|
||
.toString()
|
||
.padStart(2, '0')}`;
|
||
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
|
||
const now = new Date();
|
||
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
|
||
const startDate = formatDate(startOfMonth);
|
||
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
|
||
|
||
const [used, subs] = await Promise.all([
|
||
fetch(
|
||
this.path(
|
||
`${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`,
|
||
),
|
||
{
|
||
method: 'GET',
|
||
headers: getHeaders(),
|
||
},
|
||
),
|
||
fetch(this.path(OpenaiPath.SubsPath), {
|
||
method: 'GET',
|
||
headers: getHeaders(),
|
||
}),
|
||
]);
|
||
|
||
if (used.status === 401) {
|
||
throw new Error(Locale.Error.Unauthorized);
|
||
}
|
||
|
||
if (!used.ok || !subs.ok) {
|
||
throw new Error('Failed to query usage from openai');
|
||
}
|
||
|
||
const response = (await used.json()) as {
|
||
total_usage?: number;
|
||
error?: {
|
||
type: string;
|
||
message: string;
|
||
};
|
||
};
|
||
|
||
const total = (await subs.json()) as {
|
||
hard_limit_usd?: number;
|
||
};
|
||
|
||
if (response.error && response.error.type) {
|
||
throw new Error(response.error.message);
|
||
}
|
||
|
||
if (response.total_usage) {
|
||
response.total_usage = Math.round(response.total_usage) / 100;
|
||
}
|
||
|
||
if (total.hard_limit_usd) {
|
||
total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100;
|
||
}
|
||
|
||
return {
|
||
used: response.total_usage,
|
||
total: total.hard_limit_usd,
|
||
} as LLMUsage;
|
||
}
|
||
|
||
async models(): Promise<LLMModel[]> {
|
||
if (this.disableListModels) {
|
||
return DEFAULT_MODELS.slice();
|
||
}
|
||
|
||
const res = await fetch(this.path(OpenaiPath.ListModelPath), {
|
||
method: 'GET',
|
||
headers: {
|
||
...getHeaders(),
|
||
},
|
||
});
|
||
|
||
const resJson = (await res.json()) as OpenAIListModelResponse;
|
||
const chatModels = resJson.data?.filter(
|
||
m => m.id.startsWith('gpt-') || m.id.startsWith('chatgpt-'),
|
||
);
|
||
console.log('[Models]', chatModels);
|
||
|
||
if (!chatModels) {
|
||
return [];
|
||
}
|
||
|
||
// 由于目前 OpenAI 的 disableListModels 默认为 true,所以当前实际不会运行到这场
|
||
let seq = 1000; // 同 Constant.ts 中的排序保持一致
|
||
return chatModels.map(m => ({
|
||
name: m.id,
|
||
available: true,
|
||
sorted: seq++,
|
||
provider: {
|
||
id: 'openai',
|
||
providerName: 'OpenAI',
|
||
providerType: 'openai',
|
||
sorted: 1,
|
||
},
|
||
}));
|
||
}
|
||
}
|
||
export { OpenaiPath };
|