ChatGPT-Next-Web/app/client/platforms/openai.ts

467 lines
13 KiB
TypeScript

"use client";
// azure and openai, using same models. so using same LLMApi.
import {
ApiPath,
DEFAULT_API_HOST,
DEFAULT_MODELS,
OpenaiPath,
Azure,
REQUEST_TIMEOUT_MS,
ServiceProvider,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import { collectModelsWithDefaultModel } from "@/app/utils/model";
import { preProcessImageContent } from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { DalleSize } from "@/app/typing";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
LLMUsage,
MultimodalContent,
} from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
getMessageImages,
isVisionModel,
isDalle3 as _isDalle3,
} from "@/app/utils";
export interface OpenAIListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
export interface RequestPayload {
messages: {
role: "system" | "user" | "assistant";
content: string | MultimodalContent[];
}[];
stream?: boolean;
model: string;
temperature: number;
presence_penalty: number;
frequency_penalty: number;
top_p: number;
max_tokens?: number;
}
export interface DalleRequestPayload {
model: string;
prompt: string;
n: number;
size: DalleSize;
}
export class ChatGPTApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
const isAzure = path.includes("deployments");
if (accessStore.useCustomConfig) {
if (isAzure && !accessStore.isValidAzure()) {
throw Error(
"incomplete azure config, please check it in your settings page",
);
}
baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = isAzure ? ApiPath.Azure : ApiPath.OpenAI;
baseUrl = isApp ? DEFAULT_API_HOST + "/proxy" + apiPath : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (
!baseUrl.startsWith("http") &&
!isAzure &&
!baseUrl.startsWith(ApiPath.OpenAI)
) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
// try rebuild url, when using cloudflare ai gateway in client
return cloudflareAIGatewayUrl([baseUrl, path].join("/"));
}
extractMessage(res: any) {
if (res.error) {
return "```\n" + JSON.stringify(res, null, 4) + "\n```";
}
// dalle3 model return url, just return
if (res.data) {
const url = res.data?.at(0)?.url ?? "";
return [
{
type: "image_url",
image_url: {
url,
},
},
];
}
return res.choices?.at(0)?.message?.content ?? "";
}
async chat(options: ChatOptions) {
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
let requestPayload: RequestPayload | DalleRequestPayload;
const isDalle3 = _isDalle3(options.config.model);
if (isDalle3) {
const prompt = getMessageTextContent(
options.messages.slice(-1)?.pop() as any,
);
requestPayload = {
model: options.config.model,
prompt,
n: 1,
size: options.config?.size ?? "1024x1024",
};
} else {
const visionModel = isVisionModel(options.config.model);
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = visionModel
? await preProcessImageContent(v.content)
: getMessageTextContent(v);
messages.push({ role: v.role, content });
}
requestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
// add max_tokens to vision model
if (visionModel && modelConfig.model.includes("preview")) {
requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000);
}
}
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !isDalle3 && !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
let chatPath = "";
if (modelConfig.providerName === ServiceProvider.Azure) {
// find model, and get displayName as deployName
const { models: configModels, customModels: configCustomModels } =
useAppConfig.getState();
const {
defaultModel,
customModels: accessCustomModels,
useCustomConfig,
} = useAccessStore.getState();
const models = collectModelsWithDefaultModel(
configModels,
[configCustomModels, accessCustomModels].join(","),
defaultModel,
);
const model = models.find(
(model) =>
model.name === modelConfig.model &&
model?.provider?.providerName === ServiceProvider.Azure,
);
chatPath = this.path(
(isDalle3 ? Azure.ImagePath : Azure.ChatPath)(
(model?.displayName ?? model?.name) as string,
useCustomConfig ? useAccessStore.getState().azureApiVersion : "",
),
);
} else {
chatPath = this.path(
isDalle3 ? OpenaiPath.ImagePath : OpenaiPath.ChatPath,
);
}
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
}
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[OpenAI] request response content type: ",
contentType,
);
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
const textmoderation = json?.prompt_filter_results;
if (delta) {
remainText += delta;
}
if (
textmoderation &&
textmoderation.length > 0 &&
ServiceProvider.Azure
) {
const contentFilterResults =
textmoderation[0]?.content_filter_results;
console.log(
`[${ServiceProvider.Azure}] [Text Moderation] flagged categories result:`,
contentFilterResults,
);
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
const formatDate = (d: Date) =>
`${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, "0")}-${d
.getDate()
.toString()
.padStart(2, "0")}`;
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
const now = new Date();
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
const startDate = formatDate(startOfMonth);
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
const [used, subs] = await Promise.all([
fetch(
this.path(
`${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`,
),
{
method: "GET",
headers: getHeaders(),
},
),
fetch(this.path(OpenaiPath.SubsPath), {
method: "GET",
headers: getHeaders(),
}),
]);
if (used.status === 401) {
throw new Error(Locale.Error.Unauthorized);
}
if (!used.ok || !subs.ok) {
throw new Error("Failed to query usage from openai");
}
const response = (await used.json()) as {
total_usage?: number;
error?: {
type: string;
message: string;
};
};
const total = (await subs.json()) as {
hard_limit_usd?: number;
};
if (response.error && response.error.type) {
throw Error(response.error.message);
}
if (response.total_usage) {
response.total_usage = Math.round(response.total_usage) / 100;
}
if (total.hard_limit_usd) {
total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100;
}
return {
used: response.total_usage,
total: total.hard_limit_usd,
} as LLMUsage;
}
async models(): Promise<LLMModel[]> {
if (this.disableListModels) {
return DEFAULT_MODELS.slice();
}
const res = await fetch(this.path(OpenaiPath.ListModelPath), {
method: "GET",
headers: {
...getHeaders(),
},
});
const resJson = (await res.json()) as OpenAIListModelResponse;
const chatModels = resJson.data?.filter((m) => m.id.startsWith("gpt-"));
console.log("[Models]", chatModels);
if (!chatModels) {
return [];
}
return chatModels.map((m) => ({
name: m.id,
available: true,
provider: {
id: "openai",
providerName: "OpenAI",
providerType: "openai",
},
}));
}
}
export { OpenaiPath };