ChatGPT-Next-Web/app/client/platforms/openai.ts

568 lines
16 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use client";
// azure and openai, using same models. so using same LLMApi.
import {
ApiPath,
DEFAULT_API_HOST,
DEFAULT_MODELS,
OpenaiPath,
Azure,
REQUEST_TIMEOUT_MS,
ServiceProvider,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import { collectModelsWithDefaultModel } from "@/app/utils/model";
import {
preProcessImageContent,
uploadImage,
base64Image2Blob,
} from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { DalleSize, DalleQuality, DalleStyle } from "@/app/typing";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
LLMUsage,
MultimodalContent,
SpeechOptions,
TranscriptionOptions,
} from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
getMessageImages,
isVisionModel,
isDalle3 as _isDalle3,
} from "@/app/utils";
export interface OpenAIListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
export interface RequestPayload {
messages: {
role: "system" | "user" | "assistant";
content: string | MultimodalContent[];
}[];
stream?: boolean;
model: string;
temperature: number;
presence_penalty: number;
frequency_penalty: number;
top_p: number;
max_tokens?: number;
}
export interface DalleRequestPayload {
model: string;
prompt: string;
response_format: "url" | "b64_json";
n: number;
size: DalleSize;
quality: DalleQuality;
style: DalleStyle;
}
export class ChatGPTApi implements LLMApi {
private disableListModels = true;
path(path: string, model?: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
const isAzure = path.includes("deployments");
if (accessStore.useCustomConfig) {
if (isAzure && !accessStore.isValidAzure()) {
throw Error(
"incomplete azure config, please check it in your settings page",
);
}
baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = isAzure ? ApiPath.Azure : ApiPath.OpenAI;
baseUrl = isApp ? DEFAULT_API_HOST + "/proxy" + apiPath : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (
!baseUrl.startsWith("http") &&
!isAzure &&
!baseUrl.startsWith(ApiPath.OpenAI)
) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
// try rebuild url, when using cloudflare ai gateway in client
return cloudflareAIGatewayUrl([baseUrl, path].join("/"));
}
async extractMessage(res: any) {
if (res.error) {
return "```\n" + JSON.stringify(res, null, 4) + "\n```";
}
// dalle3 model return url, using url create image message
if (res.data) {
let url = res.data?.at(0)?.url ?? "";
const b64_json = res.data?.at(0)?.b64_json ?? "";
if (!url && b64_json) {
// uploadImage
url = await uploadImage(base64Image2Blob(b64_json, "image/png"));
}
return [
{
type: "image_url",
image_url: {
url,
},
},
];
}
return res.choices?.at(0)?.message?.content ?? res;
}
async speech(options: SpeechOptions): Promise<ArrayBuffer> {
const requestPayload = {
model: options.model,
input: options.input,
voice: options.voice,
response_format: options.response_format,
speed: options.speed,
};
console.log("[Request] openai speech payload: ", requestPayload);
const controller = new AbortController();
options.onController?.(controller);
try {
const speechPath = this.path(OpenaiPath.SpeechPath, options.model);
const speechPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
const res = await fetch(speechPath, speechPayload);
clearTimeout(requestTimeoutId);
return await res.arrayBuffer();
} catch (e) {
console.log("[Request] failed to make a speech request", e);
throw e;
}
}
async transcription(options: TranscriptionOptions): Promise<string> {
const formData = new FormData();
formData.append("file", options.file, "audio.wav");
formData.append("model", options.model ?? "whisper-1");
if (options.language) formData.append("language", options.language);
if (options.prompt) formData.append("prompt", options.prompt);
if (options.response_format)
formData.append("response_format", options.response_format);
if (options.temperature)
formData.append("temperature", options.temperature.toString());
console.log("[Request] openai audio transcriptions payload: ", options);
const controller = new AbortController();
options.onController?.(controller);
try {
const path = this.path(OpenaiPath.TranscriptionPath, options.model);
const headers = getHeaders(true);
const payload = {
method: "POST",
body: formData,
signal: controller.signal,
headers: headers,
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
const res = await fetch(path, payload);
clearTimeout(requestTimeoutId);
const json = await res.json();
return json.text;
} catch (e) {
console.log("[Request] failed to make a audio transcriptions request", e);
throw e;
}
}
async chat(options: ChatOptions) {
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
let requestPayload: RequestPayload | DalleRequestPayload;
const isDalle3 = _isDalle3(options.config.model);
if (isDalle3) {
const prompt = getMessageTextContent(
options.messages.slice(-1)?.pop() as any,
);
requestPayload = {
model: options.config.model,
prompt,
// URLs are only valid for 60 minutes after the image has been generated.
response_format: "b64_json", // using b64_json, and save image in CacheStorage
n: 1,
size: options.config?.size ?? "1024x1024",
quality: options.config?.quality ?? "standard",
style: options.config?.style ?? "vivid",
};
} else {
const visionModel = isVisionModel(options.config.model);
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = visionModel
? await preProcessImageContent(v.content)
: getMessageTextContent(v);
messages.push({ role: v.role, content });
}
requestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
// add max_tokens to vision model
if (visionModel && modelConfig.model.includes("preview")) {
requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000);
}
}
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !isDalle3 && !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
let chatPath = "";
if (modelConfig.providerName === ServiceProvider.Azure) {
// find model, and get displayName as deployName
const { models: configModels, customModels: configCustomModels } =
useAppConfig.getState();
const {
defaultModel,
customModels: accessCustomModels,
useCustomConfig,
} = useAccessStore.getState();
const models = collectModelsWithDefaultModel(
configModels,
[configCustomModels, accessCustomModels].join(","),
defaultModel,
);
const model = models.find(
(model) =>
model.name === modelConfig.model &&
model?.provider?.providerName === ServiceProvider.Azure,
);
chatPath = this.path(
(isDalle3 ? Azure.ImagePath : Azure.ChatPath)(
(model?.displayName ?? model?.name) as string,
useCustomConfig ? useAccessStore.getState().azureApiVersion : "",
),
);
} else {
chatPath = this.path(
isDalle3 ? OpenaiPath.ImagePath : OpenaiPath.ChatPath,
);
}
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isDalle3 ? REQUEST_TIMEOUT_MS * 2 : REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
}
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[OpenAI] request response content type: ",
contentType,
);
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
const textmoderation = json?.prompt_filter_results;
if (delta) {
remainText += delta;
}
if (
textmoderation &&
textmoderation.length > 0 &&
ServiceProvider.Azure
) {
const contentFilterResults =
textmoderation[0]?.content_filter_results;
console.log(
`[${ServiceProvider.Azure}] [Text Moderation] flagged categories result:`,
contentFilterResults,
);
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = await this.extractMessage(resJson);
options.onFinish(message);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
const formatDate = (d: Date) =>
`${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, "0")}-${d
.getDate()
.toString()
.padStart(2, "0")}`;
const ONE_DAY = 1 * 24 * 60 * 60 * 1000;
const now = new Date();
const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1);
const startDate = formatDate(startOfMonth);
const endDate = formatDate(new Date(Date.now() + ONE_DAY));
const [used, subs] = await Promise.all([
fetch(
this.path(
`${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`,
),
{
method: "GET",
headers: getHeaders(),
},
),
fetch(this.path(OpenaiPath.SubsPath), {
method: "GET",
headers: getHeaders(),
}),
]);
if (used.status === 401) {
throw new Error(Locale.Error.Unauthorized);
}
if (!used.ok || !subs.ok) {
throw new Error("Failed to query usage from openai");
}
const response = (await used.json()) as {
total_usage?: number;
error?: {
type: string;
message: string;
};
};
const total = (await subs.json()) as {
hard_limit_usd?: number;
};
if (response.error && response.error.type) {
throw Error(response.error.message);
}
if (response.total_usage) {
response.total_usage = Math.round(response.total_usage) / 100;
}
if (total.hard_limit_usd) {
total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100;
}
return {
used: response.total_usage,
total: total.hard_limit_usd,
} as LLMUsage;
}
async models(): Promise<LLMModel[]> {
if (this.disableListModels) {
return DEFAULT_MODELS.slice();
}
const res = await fetch(this.path(OpenaiPath.ListModelPath), {
method: "GET",
headers: {
...getHeaders(),
},
});
const resJson = (await res.json()) as OpenAIListModelResponse;
const chatModels = resJson.data?.filter((m) => m.id.startsWith("gpt-"));
console.log("[Models]", chatModels);
if (!chatModels) {
return [];
}
//由于目前 OpenAI 的 disableListModels 默认为 true所以当前实际不会运行到这场
let seq = 1000; //同 Constant.ts 中的排序保持一致
return chatModels.map((m) => ({
name: m.id,
available: true,
sorted: seq++,
provider: {
id: "openai",
providerName: "OpenAI",
providerType: "openai",
sorted: 1,
},
}));
}
}
export { OpenaiPath };