244 lines
6.8 KiB
TypeScript
244 lines
6.8 KiB
TypeScript
"use client";
|
|
// azure and openai, using same models. so using same LLMApi.
|
|
import {
|
|
ApiPath,
|
|
SILICONFLOW_BASE_URL,
|
|
SiliconFlow,
|
|
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
|
} from "@/app/constant";
|
|
import {
|
|
useAccessStore,
|
|
useAppConfig,
|
|
useChatStore,
|
|
ChatMessageTool,
|
|
usePluginStore,
|
|
} from "@/app/store";
|
|
import { streamWithThink } from "@/app/utils/chat";
|
|
import {
|
|
ChatOptions,
|
|
getHeaders,
|
|
LLMApi,
|
|
LLMModel,
|
|
SpeechOptions,
|
|
} from "../api";
|
|
import { getClientConfig } from "@/app/config/client";
|
|
import {
|
|
getMessageTextContent,
|
|
getMessageTextContentWithoutThinking,
|
|
} from "@/app/utils";
|
|
import { RequestPayload } from "./openai";
|
|
import { fetch } from "@/app/utils/stream";
|
|
|
|
export class SiliconflowApi implements LLMApi {
|
|
private disableListModels = true;
|
|
|
|
path(path: string): string {
|
|
const accessStore = useAccessStore.getState();
|
|
|
|
let baseUrl = "";
|
|
|
|
if (accessStore.useCustomConfig) {
|
|
baseUrl = accessStore.siliconflowUrl;
|
|
}
|
|
|
|
if (baseUrl.length === 0) {
|
|
const isApp = !!getClientConfig()?.isApp;
|
|
const apiPath = ApiPath.SiliconFlow;
|
|
baseUrl = isApp ? SILICONFLOW_BASE_URL : apiPath;
|
|
}
|
|
|
|
if (baseUrl.endsWith("/")) {
|
|
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
|
|
}
|
|
if (
|
|
!baseUrl.startsWith("http") &&
|
|
!baseUrl.startsWith(ApiPath.SiliconFlow)
|
|
) {
|
|
baseUrl = "https://" + baseUrl;
|
|
}
|
|
|
|
console.log("[Proxy Endpoint] ", baseUrl, path);
|
|
|
|
return [baseUrl, path].join("/");
|
|
}
|
|
|
|
extractMessage(res: any) {
|
|
return res.choices?.at(0)?.message?.content ?? "";
|
|
}
|
|
|
|
speech(options: SpeechOptions): Promise<ArrayBuffer> {
|
|
throw new Error("Method not implemented.");
|
|
}
|
|
|
|
async chat(options: ChatOptions) {
|
|
const messages: ChatOptions["messages"] = [];
|
|
for (const v of options.messages) {
|
|
if (v.role === "assistant") {
|
|
const content = getMessageTextContentWithoutThinking(v);
|
|
messages.push({ role: v.role, content });
|
|
} else {
|
|
const content = getMessageTextContent(v);
|
|
messages.push({ role: v.role, content });
|
|
}
|
|
}
|
|
|
|
const modelConfig = {
|
|
...useAppConfig.getState().modelConfig,
|
|
...useChatStore.getState().currentSession().mask.modelConfig,
|
|
...{
|
|
model: options.config.model,
|
|
providerName: options.config.providerName,
|
|
},
|
|
};
|
|
|
|
const requestPayload: RequestPayload = {
|
|
messages,
|
|
stream: options.config.stream,
|
|
model: modelConfig.model,
|
|
temperature: modelConfig.temperature,
|
|
presence_penalty: modelConfig.presence_penalty,
|
|
frequency_penalty: modelConfig.frequency_penalty,
|
|
top_p: modelConfig.top_p,
|
|
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
|
|
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
|
|
};
|
|
|
|
console.log("[Request] openai payload: ", requestPayload);
|
|
|
|
const shouldStream = !!options.config.stream;
|
|
const controller = new AbortController();
|
|
options.onController?.(controller);
|
|
|
|
try {
|
|
const chatPath = this.path(SiliconFlow.ChatPath);
|
|
const chatPayload = {
|
|
method: "POST",
|
|
body: JSON.stringify(requestPayload),
|
|
signal: controller.signal,
|
|
headers: getHeaders(),
|
|
};
|
|
|
|
// console.log(chatPayload);
|
|
|
|
// make a fetch request
|
|
const requestTimeoutId = setTimeout(
|
|
() => controller.abort(),
|
|
REQUEST_TIMEOUT_MS_FOR_THINKING,
|
|
);
|
|
|
|
if (shouldStream) {
|
|
const [tools, funcs] = usePluginStore
|
|
.getState()
|
|
.getAsTools(
|
|
useChatStore.getState().currentSession().mask?.plugin || [],
|
|
);
|
|
return streamWithThink(
|
|
chatPath,
|
|
requestPayload,
|
|
getHeaders(),
|
|
tools as any,
|
|
funcs,
|
|
controller,
|
|
// parseSSE
|
|
(text: string, runTools: ChatMessageTool[]) => {
|
|
// console.log("parseSSE", text, runTools);
|
|
const json = JSON.parse(text);
|
|
const choices = json.choices as Array<{
|
|
delta: {
|
|
content: string | null;
|
|
tool_calls: ChatMessageTool[];
|
|
reasoning_content: string | null;
|
|
};
|
|
}>;
|
|
const tool_calls = choices[0]?.delta?.tool_calls;
|
|
if (tool_calls?.length > 0) {
|
|
const index = tool_calls[0]?.index;
|
|
const id = tool_calls[0]?.id;
|
|
const args = tool_calls[0]?.function?.arguments;
|
|
if (id) {
|
|
runTools.push({
|
|
id,
|
|
type: tool_calls[0]?.type,
|
|
function: {
|
|
name: tool_calls[0]?.function?.name as string,
|
|
arguments: args,
|
|
},
|
|
});
|
|
} else {
|
|
// @ts-ignore
|
|
runTools[index]["function"]["arguments"] += args;
|
|
}
|
|
}
|
|
const reasoning = choices[0]?.delta?.reasoning_content;
|
|
const content = choices[0]?.delta?.content;
|
|
|
|
// Skip if both content and reasoning_content are empty or null
|
|
if (
|
|
(!reasoning || reasoning.trim().length === 0) &&
|
|
(!content || content.trim().length === 0)
|
|
) {
|
|
return {
|
|
isThinking: false,
|
|
content: "",
|
|
};
|
|
}
|
|
|
|
if (reasoning && reasoning.trim().length > 0) {
|
|
return {
|
|
isThinking: true,
|
|
content: reasoning,
|
|
};
|
|
} else if (content && content.trim().length > 0) {
|
|
return {
|
|
isThinking: false,
|
|
content: content,
|
|
};
|
|
}
|
|
|
|
return {
|
|
isThinking: false,
|
|
content: "",
|
|
};
|
|
},
|
|
// processToolMessage, include tool_calls message and tool call results
|
|
(
|
|
requestPayload: RequestPayload,
|
|
toolCallMessage: any,
|
|
toolCallResult: any[],
|
|
) => {
|
|
// @ts-ignore
|
|
requestPayload?.messages?.splice(
|
|
// @ts-ignore
|
|
requestPayload?.messages?.length,
|
|
0,
|
|
toolCallMessage,
|
|
...toolCallResult,
|
|
);
|
|
},
|
|
options,
|
|
);
|
|
} else {
|
|
const res = await fetch(chatPath, chatPayload);
|
|
clearTimeout(requestTimeoutId);
|
|
|
|
const resJson = await res.json();
|
|
const message = this.extractMessage(resJson);
|
|
options.onFinish(message, res);
|
|
}
|
|
} catch (e) {
|
|
console.log("[Request] failed to make a chat request", e);
|
|
options.onError?.(e as Error);
|
|
}
|
|
}
|
|
async usage() {
|
|
return {
|
|
used: 0,
|
|
total: 0,
|
|
};
|
|
}
|
|
|
|
async models(): Promise<LLMModel[]> {
|
|
return [];
|
|
}
|
|
}
|