ChatGPT-Next-Web/app/client/platforms/google.ts

322 lines
9.5 KiB
TypeScript

import {
ApiPath,
Google,
REQUEST_TIMEOUT_MS,
REQUEST_TIMEOUT_MS_FOR_THINKING,
} from "@/app/constant";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
LLMUsage,
SpeechOptions,
} from "../api";
import {
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
ChatMessageTool,
} from "@/app/store";
import { stream } from "@/app/utils/chat";
import { getClientConfig } from "@/app/config/client";
import { GEMINI_BASE_URL } from "@/app/constant";
import {
getMessageTextContent,
getMessageImages,
isVisionModel,
} from "@/app/utils";
import { preProcessImageContent } from "@/app/utils/chat";
import { nanoid } from "nanoid";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export class GeminiProApi implements LLMApi {
path(path: string, shouldStream = false): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.googleUrl;
}
const isApp = !!getClientConfig()?.isApp;
if (baseUrl.length === 0) {
baseUrl = isApp ? GEMINI_BASE_URL : ApiPath.Google;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.Google)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
let chatPath = [baseUrl, path].join("/");
if (shouldStream) {
chatPath += chatPath.includes("?") ? "&alt=sse" : "?alt=sse";
}
return chatPath;
}
extractMessage(res: any) {
console.log("[Response] gemini-pro response: ", res);
const getTextFromParts = (parts: any[]) => {
if (!Array.isArray(parts)) return "";
return parts
.map((part) => part?.text || "")
.filter((text) => text.trim() !== "")
.join("\n\n");
};
let content = "";
if (Array.isArray(res)) {
res.map((item) => {
content += getTextFromParts(item?.candidates?.at(0)?.content?.parts);
});
}
return (
getTextFromParts(res?.candidates?.at(0)?.content?.parts) ||
content || //getTextFromParts(res?.at(0)?.candidates?.at(0)?.content?.parts) ||
res?.error?.message ||
""
);
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions): Promise<void> {
const apiClient = this;
let multimodal = false;
// try get base64image from local cache image_url
const _messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = await preProcessImageContent(v.content);
_messages.push({ role: v.role, content });
}
const messages = _messages.map((v) => {
let parts: any[] = [{ text: getMessageTextContent(v) }];
if (isVisionModel(options.config.model)) {
const images = getMessageImages(v);
if (images.length > 0) {
multimodal = true;
parts = parts.concat(
images.map((image) => {
const imageType = image.split(";")[0].split(":")[1];
const imageData = image.split(",")[1];
return {
inline_data: {
mime_type: imageType,
data: imageData,
},
};
}),
);
}
}
return {
role: v.role.replace("assistant", "model").replace("system", "user"),
parts: parts,
};
});
// google requires that role in neighboring messages must not be the same
for (let i = 0; i < messages.length - 1; ) {
// Check if current and next item both have the role "model"
if (messages[i].role === messages[i + 1].role) {
// Concatenate the 'parts' of the current and next item
messages[i].parts = messages[i].parts.concat(messages[i + 1].parts);
// Remove the next item
messages.splice(i + 1, 1);
} else {
// Move to the next item
i++;
}
}
// if (visionModel && messages.length > 1) {
// options.onError?.(new Error("Multiturn chat is not enabled for models/gemini-pro-vision"));
// }
const accessStore = useAccessStore.getState();
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
},
};
const requestPayload = {
contents: messages,
generationConfig: {
// stopSequences: [
// "Title"
// ],
temperature: modelConfig.temperature,
maxOutputTokens: modelConfig.max_tokens,
topP: modelConfig.top_p,
// "topK": modelConfig.top_k,
},
safetySettings: [
{
category: "HARM_CATEGORY_HARASSMENT",
threshold: accessStore.googleSafetySettings,
},
{
category: "HARM_CATEGORY_HATE_SPEECH",
threshold: accessStore.googleSafetySettings,
},
{
category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
threshold: accessStore.googleSafetySettings,
},
{
category: "HARM_CATEGORY_DANGEROUS_CONTENT",
threshold: accessStore.googleSafetySettings,
},
],
};
let shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
// https://github.com/google-gemini/cookbook/blob/main/quickstarts/rest/Streaming_REST.ipynb
const chatPath = this.path(
Google.ChatPath(modelConfig.model),
shouldStream,
);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
const isThinking = options.config.model.includes("-thinking");
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isThinking ? REQUEST_TIMEOUT_MS_FOR_THINKING : REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
chatPath,
requestPayload,
getHeaders(),
// @ts-ignore
tools.length > 0
? // @ts-ignore
[{ functionDeclarations: tools.map((tool) => tool.function) }]
: [],
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const chunkJson = JSON.parse(text);
const functionCall = chunkJson?.candidates
?.at(0)
?.content.parts.at(0)?.functionCall;
if (functionCall) {
const { name, args } = functionCall;
runTools.push({
id: nanoid(),
type: "function",
function: {
name,
arguments: JSON.stringify(args), // utils.chat call function, using JSON.parse
},
});
}
return chunkJson?.candidates
?.at(0)
?.content.parts?.map((part: { text: string }) => part.text)
.join("\n\n");
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.contents?.splice(
// @ts-ignore
requestPayload?.contents?.length,
0,
{
role: "model",
parts: toolCallMessage.tool_calls.map(
(tool: ChatMessageTool) => ({
functionCall: {
name: tool?.function?.name,
args: JSON.parse(tool?.function?.arguments as string),
},
}),
),
},
// @ts-ignore
...toolCallResult.map((result) => ({
role: "function",
parts: [
{
functionResponse: {
name: result.name,
response: {
name: result.name,
content: result.content, // TODO just text content...
},
},
},
],
})),
);
},
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
if (resJson?.promptFeedback?.blockReason) {
// being blocked
options.onError?.(
new Error(
"Message is being blocked for reason: " +
resJson.promptFeedback.blockReason,
),
);
}
const message = apiClient.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
usage(): Promise<LLMUsage> {
throw new Error("Method not implemented.");
}
async models(): Promise<LLMModel[]> {
return [];
}
}