Merge branch 'main' into tts-stt

This commit is contained in:
DDMeaqua
2024-09-18 10:39:56 +08:00
62 changed files with 2254 additions and 524 deletions

View File

@@ -5,7 +5,13 @@ import {
ModelProvider,
ServiceProvider,
} from "../constant";
import { ChatMessage, ModelType, useAccessStore, useChatStore } from "../store";
import {
ChatMessageTool,
ChatMessage,
ModelType,
useAccessStore,
useChatStore,
} from "../store";
import { ChatGPTApi, DalleRequestPayload } from "./platforms/openai";
import { GeminiProApi } from "./platforms/google";
import { ClaudeApi } from "./platforms/anthropic";
@@ -76,6 +82,8 @@ export interface ChatOptions {
onFinish: (message: string) => void;
onError?: (err: Error) => void;
onController?: (controller: AbortController) => void;
onBeforeTool?: (tool: ChatMessageTool) => void;
onAfterTool?: (tool: ChatMessageTool) => void;
}
export interface LLMUsage {

View File

@@ -7,7 +7,13 @@ import {
SpeechOptions,
TranscriptionOptions,
} from "../api";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
ChatMessageTool,
} from "@/app/store";
import { getClientConfig } from "@/app/config/client";
import { DEFAULT_API_HOST } from "@/app/constant";
import {
@@ -18,8 +24,9 @@ import {
import Locale from "../../locales";
import { prettyObject } from "@/app/utils/format";
import { getMessageTextContent, isVisionModel } from "@/app/utils";
import { preProcessImageContent } from "@/app/utils/chat";
import { preProcessImageContent, stream } from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { RequestPayload } from "./openai";
export type MultiBlockContent = {
type: "image" | "text";
@@ -205,112 +212,126 @@ export class ClaudeApi implements LLMApi {
const controller = new AbortController();
options.onController?.(controller);
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: {
...getHeaders(), // get common headers
"anthropic-version": accessStore.anthropicApiVersion,
// do not send `anthropicApiKey` in browser!!!
// Authorization: getAuthKey(accessStore.anthropicApiKey),
},
};
if (shouldStream) {
try {
const context = {
text: "",
finished: false,
};
const finish = () => {
if (!context.finished) {
options.onFinish(context.text);
context.finished = true;
}
};
controller.signal.onabort = finish;
fetchEventSource(path, {
...payload,
async onopen(res) {
const contentType = res.headers.get("content-type");
console.log("response content type: ", contentType);
if (contentType?.startsWith("text/plain")) {
context.text = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [context.text];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
context.text = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
let chunkJson:
| undefined
| {
type: "content_block_delta" | "content_block_stop";
delta?: {
type: "text_delta";
text: string;
};
index: number;
let index = -1;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
path,
requestBody,
{
...getHeaders(),
"anthropic-version": accessStore.anthropicApiVersion,
},
// @ts-ignore
tools.map((tool) => ({
name: tool?.function?.name,
description: tool?.function?.description,
input_schema: tool?.function?.parameters,
})),
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
let chunkJson:
| undefined
| {
type: "content_block_delta" | "content_block_stop";
content_block?: {
type: "tool_use";
id: string;
name: string;
};
try {
chunkJson = JSON.parse(msg.data);
} catch (e) {
console.error("[Response] parse error", msg.data);
}
delta?: {
type: "text_delta" | "input_json_delta";
text?: string;
partial_json?: string;
};
index: number;
};
chunkJson = JSON.parse(text);
if (!chunkJson || chunkJson.type === "content_block_stop") {
return finish();
}
const { delta } = chunkJson;
if (delta?.text) {
context.text += delta.text;
options.onUpdate?.(context.text, delta.text);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} catch (e) {
console.error("failed to chat", e);
options.onError?.(e as Error);
}
if (chunkJson?.content_block?.type == "tool_use") {
index += 1;
const id = chunkJson?.content_block.id;
const name = chunkJson?.content_block.name;
runTools.push({
id,
type: "function",
function: {
name,
arguments: "",
},
});
}
if (
chunkJson?.delta?.type == "input_json_delta" &&
chunkJson?.delta?.partial_json
) {
// @ts-ignore
runTools[index]["function"]["arguments"] +=
chunkJson?.delta?.partial_json;
}
return chunkJson?.delta?.text;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// reset index value
index = -1;
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
{
role: "assistant",
content: toolCallMessage.tool_calls.map(
(tool: ChatMessageTool) => ({
type: "tool_use",
id: tool.id,
name: tool?.function?.name,
input: tool?.function?.arguments
? JSON.parse(tool?.function?.arguments)
: {},
}),
),
},
// @ts-ignore
...toolCallResult.map((result) => ({
role: "user",
content: [
{
type: "tool_result",
tool_use_id: result.tool_call_id,
content: result.content,
},
],
})),
);
},
options,
);
} else {
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: {
...getHeaders(), // get common headers
"anthropic-version": accessStore.anthropicApiVersion,
// do not send `anthropicApiKey` in browser!!!
// Authorization: getAuthKey(accessStore.anthropicApiKey),
},
};
try {
controller.signal.onabort = () => options.onFinish("");

View File

@@ -8,9 +8,15 @@ import {
REQUEST_TIMEOUT_MS,
ServiceProvider,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import { collectModelsWithDefaultModel } from "@/app/utils/model";
import { preProcessImageContent } from "@/app/utils/chat";
import { preProcessImageContent, stream } from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import {
@@ -125,115 +131,66 @@ export class MoonshotApi implements LLMApi {
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string;
tool_calls: ChatMessageTool[];
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[OpenAI] request response content type: ",
contentType,
return choices[0]?.delta?.content;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
const textmoderation = json?.prompt_filter_results;
if (delta) {
remainText += delta;
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);

View File

@@ -9,12 +9,19 @@ import {
REQUEST_TIMEOUT_MS,
ServiceProvider,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
ChatMessageTool,
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
} from "@/app/store";
import { collectModelsWithDefaultModel } from "@/app/utils/model";
import {
preProcessImageContent,
uploadImage,
base64Image2Blob,
stream,
} from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { DalleSize, DalleQuality, DalleStyle } from "@/app/typing";
@@ -234,6 +241,7 @@ export class ChatGPTApi implements LLMApi {
let requestPayload: RequestPayload | DalleRequestPayload;
const isDalle3 = _isDalle3(options.config.model);
const isO1 = options.config.model.startsWith("o1");
if (isDalle3) {
const prompt = getMessageTextContent(
options.messages.slice(-1)?.pop() as any,
@@ -255,30 +263,32 @@ export class ChatGPTApi implements LLMApi {
const content = visionModel
? await preProcessImageContent(v.content)
: getMessageTextContent(v);
messages.push({ role: v.role, content });
if (!(isO1 && v.role === "system"))
messages.push({ role: v.role, content });
}
// O1 not support image, tools (plugin in ChatGPTNextWeb) and system, stream, logprobs, temperature, top_p, n, presence_penalty, frequency_penalty yet.
requestPayload = {
messages,
stream: options.config.stream,
stream: !isO1 ? options.config.stream : false,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
temperature: !isO1 ? modelConfig.temperature : 1,
presence_penalty: !isO1 ? modelConfig.presence_penalty : 0,
frequency_penalty: !isO1 ? modelConfig.frequency_penalty : 0,
top_p: !isO1 ? modelConfig.top_p : 1,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
// add max_tokens to vision model
if (visionModel && modelConfig.model.includes("preview")) {
if (visionModel) {
requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000);
}
}
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !isDalle3 && !!options.config.stream;
const shouldStream = !isDalle3 && !!options.config.stream && !isO1;
const controller = new AbortController();
options.onController?.(controller);
@@ -314,143 +324,82 @@ export class ChatGPTApi implements LLMApi {
isDalle3 ? OpenaiPath.ImagePath : OpenaiPath.ChatPath,
);
}
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isDalle3 ? REQUEST_TIMEOUT_MS * 2 : REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
// console.log("getAsTools", tools, funcs);
stream(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string;
tool_calls: ChatMessageTool[];
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
}
return choices[0]?.delta?.content;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
controller.signal.onabort = finish;
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isDalle3 || isO1 ? REQUEST_TIMEOUT_MS * 2 : REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
);
fetchEventSource(chatPath, {
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[OpenAI] request response content type: ",
contentType,
);
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
const textmoderation = json?.prompt_filter_results;
if (delta) {
remainText += delta;
}
if (
textmoderation &&
textmoderation.length > 0 &&
ServiceProvider.Azure
) {
const contentFilterResults =
textmoderation[0]?.content_filter_results;
console.log(
`[${ServiceProvider.Azure}] [Text Moderation] flagged categories result:`,
contentFilterResults,
);
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
@@ -542,7 +491,9 @@ export class ChatGPTApi implements LLMApi {
});
const resJson = (await res.json()) as OpenAIListModelResponse;
const chatModels = resJson.data?.filter((m) => m.id.startsWith("gpt-"));
const chatModels = resJson.data?.filter(
(m) => m.id.startsWith("gpt-") || m.id.startsWith("chatgpt-"),
);
console.log("[Models]", chatModels);
if (!chatModels) {