From 0511d467739face1bf6db1eec331774d62f329a2 Mon Sep 17 00:00:00 2001 From: Web4 Date: Thu, 12 Dec 2024 00:17:20 -0500 Subject: [PATCH] Add files via upload --- ai_kubu-hai.h5 | 84 ++++++++++++++++++++++++++++++++++++++++++++++++++ pipeline.yaml | 58 ++++++++++++++++++++++++++++++++++ 2 files changed, 142 insertions(+) create mode 100644 ai_kubu-hai.h5 create mode 100644 pipeline.yaml diff --git a/ai_kubu-hai.h5 b/ai_kubu-hai.h5 new file mode 100644 index 000000000..edb53569c --- /dev/null +++ b/ai_kubu-hai.h5 @@ -0,0 +1,84 @@ +# Import necessary libraries +import numpy as np +import tensorflow as tf +from sklearn.linear_model import LinearRegression +from sklearn.datasets import make_classification +from sklearn.model_selection import train_test_split +from sklearn.metrics import accuracy_score +from transformers import GPT2LMHeadModel, GPT2Tokenizer + +# Example 1: Reactive Machine (Simple Rule-Based System) +def reactive_machine(input_value): +if input_value > 0: +return "Positive" +else: +return "Negative" + +# Example 2: Limited Memory (Simple Machine Learning Model) +def limited_memory_model(): +# Generate a simple dataset +X, y = make_classification(n_samples=1000, n_features=20, random_state=42) +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Train a simple linear regression model +model = LinearRegression() +model.fit(X_train, y_train) + +# Make predictions +predictions = model.predict(X_test) +predictions = [1 if p > 0.5 else 0 for p in predictions] + +# Evaluate the model +accuracy = accuracy_score(y_test, predictions) +return accuracy + +# Example 3: Theory of Mind (Simple Neural Network) +def theory_of_mind_model(): +# Create a simple neural network +model = tf.keras.Sequential([ +tf.keras.layers.Dense(128, activation='relu', input_shape=(20,)), +tf.keras.layers.Dense(64, activation='relu'), +tf.keras.layers.Dense(1, activation='sigmoid') +]) + +# Compile the model +model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) + +# Generate a simple dataset +X, y = make_classification(n_samples=1000, n_features=20, random_state=42) +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Train the model +model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2) + +# Evaluate the model +loss, accuracy = model.evaluate(X_test, y_test) +return accuracy + +# Example 4: General AI (Advanced Language Model) +def general_ai_model(prompt): +# Load pre-trained GPT-2 model and tokenizer +tokenizer = GPT2Tokenizer.from_pretrained("gpt2") +model = GPT2LMHeadModel.from_pretrained("gpt2") + +# Encode the input prompt +inputs = tokenizer.encode(prompt, return_tensors="pt") + +# Generate a response +outputs = model.generate(inputs, max_length=100, num_return_sequences=1) + +# Decode the response +response = tokenizer.decode(outputs[0], skip_special_tokens=True) +return response + +# Example 5: Self-Aware AI (Theoretical Concept) +def self_aware_ai(): +return "Self-aware AI is a theoretical concept and not yet achievable with current technology." + +# Main function to run examples +if __name__ == "__main__": +print("Reactive Machine Output:", reactive_machine(5)) +print("Limited Memory Model Accuracy:", limited_memory_model()) +print("Theory of Mind Model Accuracy:", theory_of_mind_model()) +print("General AI Model Response:", general_ai_model("this is the future of AI?")) +print("Self-Aware AI:", self_aware_ai()) diff --git a/pipeline.yaml b/pipeline.yaml new file mode 100644 index 000000000..87443c1bf --- /dev/null +++ b/pipeline.yaml @@ -0,0 +1,58 @@ +name: CI/CD Pipeline + +on: +push: +branches: + main +pull_request: + +branches: + main + + +jobs: +build: +runs-on: ubuntu-latest + +steps: + name: Checkout code + +uses: actions/checkout@v2 + + name: Set up Python + +uses: actions/setup-python@v2 +with: +python-version: 3.8.0 + + name: Install dependencies + +run: | +python -m pip install --upgrade pip +pip install -r requirements.txt + + name: Lint with flake8 + +run: | +pip install flake8 +# stop the build if there are Python syntax errors or undefined names +flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics +# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide +flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics + + name: Build Docker image + +run: docker build -t my-flask-api . + + name: Run tests + +run: | +docker run -d -p 5000:5000 my-flask-api +# Add your test commands here + + name: Push to Docker Hub + +run: | +echo "${{ secrets.DOCKER_PASSWORD }}" | docker login -u "${{ secrets.DOCKER_USERNAME }}" --password-stdin +docker tag my-flask-api:latest my-dockerhub-username/my-flask-api:latest +docker push my-dockerhub-username/my-flask-api:latest